Quantum Martingale Theory and Entropy Production

GONZALO MANZANO^{1,2}

Collaborators:

ROSARIO FAZIO^{1,2}

ÉDGAR ROLDÁN¹

¹ Abdus Salam ICTP, Trieste (Italy).

² Scuola Normale Superiore, Pisa (Italy).

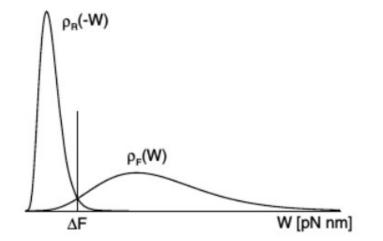
QTD 2019 Espoo (Finland) 23-28 June 2019

- Introduction
 - Fluctuation theorems
 - Martingales in stochastic thermodynamics
- Framework
 - Quantum-jump trajectories
 - Entropy production and fluctuation theorems
- Quantum martingale theory
 - Classical-Quantum split
 - Stopping times and extreme-events statistics
- Main conclusions

Fluctuation Theorems

Refined second law

Extend the second law to small systems subjected to fluctuations, where thermodynamic quantities are random variables



Jarzynski equality: $\langle e^{-W(t)/T} \rangle_{\gamma} = e^{-\Delta F/T}$ Crooks work FT: $p_F(W) = p_R(-W) \ e^{(W-\Delta F)/T}$ $\langle W(t) \rangle_{\gamma} \ge \Delta F$ $\Pr(W - \Delta F \le \xi) \le e^{-\xi/k_BT}$ C. Jarzynski, EPJ B (2008); Annu. Rev. Condens. Matter Phys. (2011)

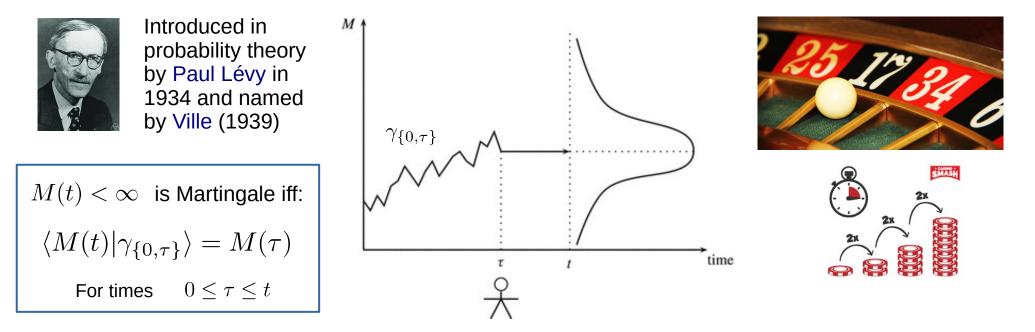
Stochastic entropy production: $\Delta s_{tot}(t) = \Delta s(t) - Q(t)/T$ (system + environment) *Key:* system entropy per trajectory $s(t) \equiv -\log \rho_t(\gamma(t))$ U. Seifert PRL (2005); Rep. Prog. Phys. (2012)

Martingales

In nonequilibrium steady states, the stochastic process $e^{-\Delta s_{tot}(t)}$ is a MARTINGALE:

$$\langle e^{-\Delta s_{\rm tot}(t)} | \gamma_{\{0,\tau\}} \rangle = e^{-\Delta s_{\rm tot}(\tau)} \quad \text{for} \quad 0 \le \tau \le t$$

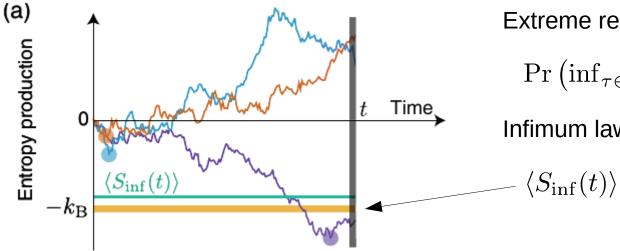
average conditioned on trajectory at past times [I. Neri, É. Roldán, and F. Jülicher, PRX (2017)]



- More general than the Fluctuation Theorem !! $\tau = 0 \Rightarrow \langle e^{-\Delta s_{\rm tot}(t)} \rangle = 1$
- Martingale processes are well known in mathematics of finance —▶ No arbitrage opportunities

Implications for entropy production

Statistics of EP finite-time infima: via Doob's maximal inequality



Extreme reductions of entropy:

$$\Pr\left(\inf_{\tau\in[0,t]}\Delta s_{\text{tot}}(\tau)\leq\xi\right)\leq e^{-\xi}$$

Infimum law:

 $\langle S_{\inf}(t) \rangle \ge -1$

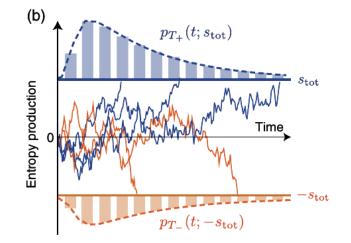
Statistics of EP at (random) stopping times: via Doob's optional sampling theorem •

Stopping times: times at which some condition of the process is verified for the first time

Fluctuation theorems for stopping times \mathcal{T} :

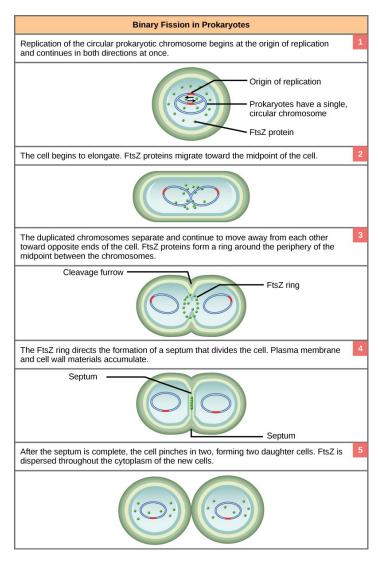
$$\langle e^{-\Delta s_{\rm tot}(\mathcal{T})} \rangle = 1$$

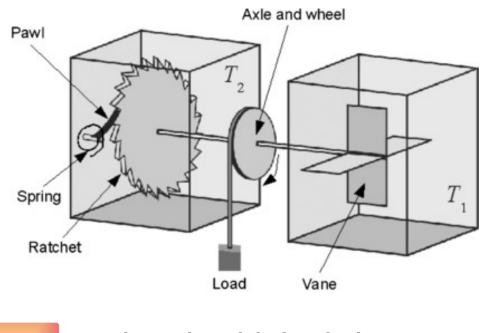
[I. Neri, É. Roldán, and F. Jülicher, PRX (2017)]



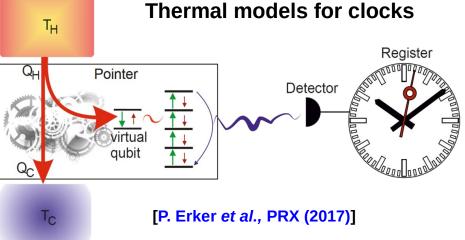
Stopping times are ubiquitous in many autonomous processes...

Cellular functions: bacterial cell cycle





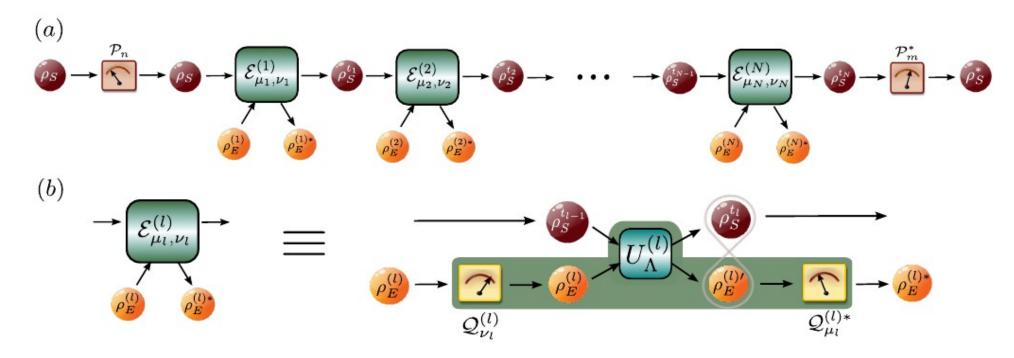
Feynman's ratchet



- Introduction
 - Fluctuation theorems
 - Martingale theory for entropy production
- Framework
 - Quantum jump trajectories
 - Entropy production
- Quantum martingale theory
 - Classical-Quantum split of entropy production
 - Stopping times and extreme-events statistics
- Main conclusions

Quantum jump trajectories

System interacts "sequentially" with the environment:



• "Trajectories" comprise all the measurements in system and environmental ancillas:

 $\gamma = \{n, (\mu_1, \nu_1), (\mu_2, \nu_2), \dots, (\mu_N, \nu_N), m\}$

• The continuous limit can be obtained if the following limit exist:

$$N \to \infty \qquad dt \to 0 \qquad \qquad \lim_{dt \to 0} \frac{\mathcal{E}^{(l)}(\rho_S^{(t_l)}) - \rho_S^{(t_l)}}{dt} \to \mathcal{L}_l(\rho_t) = \text{finite}$$

Quantum jump trajectories:

$$\rho_t \longrightarrow \rho_{t+dt} = \mathcal{E}(\rho_t) = \sum_j M_j \rho_t M_j^{\dagger} \quad \text{(Kraus representation)}$$

Measurements backaction can be recasted as:

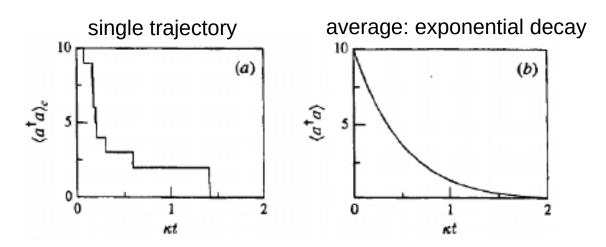
Probability during any dt:

 $P_0(t) = 1 - dt \sum_k \langle L_k^{\dagger} L_k \rangle_t$

 $P_k(t) = dt \langle L_k^{\dagger} L_k \rangle_t$

$$M_0(dt) \equiv \mathbb{I} - dt(iH + \sum_k L_k^{\dagger}L_k/2)$$
 smooth evolution
 $M_k(dt) \equiv \sqrt{dt}L_k$ quantum jump of type k

Example: Optical cavity photo-detection



Spontaneous emission

$$M_0(dt) \equiv \mathbb{I} - dt(iH + \gamma a^{\dagger}a/2)$$
$$M_{\downarrow}(dt) \equiv \sqrt{dt\gamma} a$$

Books: H. M. Wiseman and G. J. Milburn, Quantum measurement and control (2010). H. Carmichael, An open systems approach to quantum optics (1993).

Evolution under environmental monitoring

Assuming an initial pure state and keeping the record of the outcomes:

Stochastic Schrödinger equation

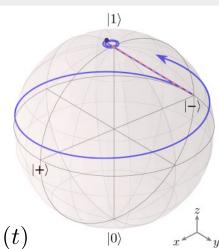
Introducing Poisson increments $dN_k(t)$ associated to the number of jumps $N_k(t)$

$$\mathrm{d}|\psi\rangle_{t} = \mathrm{d}t \left(-\frac{i}{\hbar}H + \sum_{k} \frac{\langle L_{k}^{\dagger}L_{k}\rangle_{t} - L_{k}^{\dagger}L_{k}}{2}\right)|\psi\rangle_{t} + \sum_{k} \mathrm{d}N_{k}(t) \left(\frac{L_{k}}{\sqrt{\langle L_{k}^{\dagger}L_{k}\rangle_{t}}} - \mathbb{I}\right)|\psi\rangle_{t}$$

Smooth evolution (No jump)

Jump of type k

The average evolution verifies a Lindblad master equation:



• Trajectories: Initial and final measurements (system) + jumps and times (environment):

 $\gamma_{\{0,t\}} \equiv \{n(0), \mathcal{R}_0^t, n(t)\} \text{ with environmental record } \mathcal{R}_0^t = \{(k_1, t_1), (k_2, t_2), ..., (k_J, t_J)\}$

- **Entropy production:** $\Delta s_{\text{tot}}(t) \equiv \log \left(\frac{P(\gamma_{\{0,t\}})}{\tilde{P}(\tilde{\gamma}_{\{0,t\}})} \right) = \log \left(\frac{\pi_{n(0)}}{\pi_{n(t)}} \right) + \sum_{j=1}^{J} \Delta s_{k_j}^{\text{env}}$ $\langle \Delta s(t) \rangle_{\gamma} = \Delta S = 0$ $\sum_{j} \langle \Delta s_{k_j}^{\text{env}}(t) \rangle_{\gamma} = -\int_{0}^{t} dt' \text{Tr}[\dot{\rho}_{\text{env}} \ln \rho_{\text{env}}]$
- Local detailed-balance
 - For Lindblad operators coming in pairs:

$$L_k = e^{\Delta s_k^{\rm env}/2} L_{k'}^{\dagger}$$

e.g. for a thermal bath: $\Delta s_{k_j}^{\mathrm{env}} = -\beta \Delta E_{k_j}$

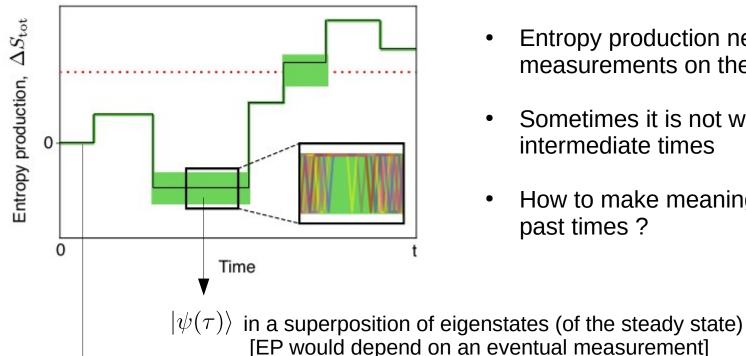
- Fluctuation theorems: $\langle e^{-\Delta s_{\text{tot}}(t)} \rangle_{\gamma} = 1 \implies \langle \Delta s_{\text{tot}}(t) \rangle_{\gamma} \ge 0$
- [G. Manzano, J.M. Horowitz, and J.M.R. Parrondo, PRX (2018);
- J.M. Horowitz and J. M. R. Parrondo, NJP (2013); J.M. Horowitz, PRE (2012)]

- Introduction
 - Fluctuation theorems
 - Martingale theory for entropy production
- Framework
 - Quantum-jump trajectories
 - Entropy production and fluctuation theorems
- Quantum martingale theory
 - Classical-Quantum split
 - Stopping times and extreme-events statistics
- Main conclusions

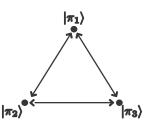
Does classical martingale theory for entropy production apply to quantum thermo?

$$\langle e^{-\Delta s_{\text{tot}}(t)} | \gamma_{\{0,\tau\}} \rangle = e^{-\Delta s_{\text{tot}}(\tau)} \quad \text{for} \quad 0 \le \tau \le t$$

average conditioned on trajectory at past times [I. Neri, É. Roldán, and F. Jülicher, PRX (2017)]



- **Quantum generalization becomes problematic !**
 - Entropy production needs measurements on the system.
 - Sometimes it is not well defined at intermediate times
 - How to make meaningful conditions on past times ?



 $|\psi(\tau)\rangle$ in a eigenstate (microstate) of the steady state [well defined without measurements] Classical Markov

• Quantum fluctuations spoil the Martingale property!

$$\langle e^{-\Delta s_{\rm tot}(t)} | \gamma_{[0,\tau]} \rangle = e^{-\Delta s_{\rm tot}(\tau) + \Delta s_{\rm unc}(\tau)} \quad \text{for} \quad 0 \le \tau \le t$$

• The extra term measures the entropic value of the uncertainty in $|\psi
angle$:

• Decomposition of the stochastic EP:

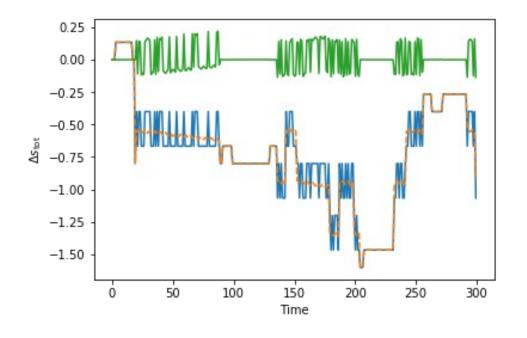
$$\Delta s_{\rm tot}(t) = \Delta s_{\rm unc}(t) + \Delta s_{\rm mar}(t)$$

$$\Delta s_{\rm mar}(t) \equiv \log\left(\frac{\pi_{n(0)}}{\langle \pi \rangle_{\psi(t)}}\right) + \sum_{k_j} \Delta s_{k_j}^{\rm env}$$

• $\Delta s_{\mathrm{mar}}(t)$ is a "classicalization" of the entropy production

Martingale property:

$$\langle e^{-\Delta s_{\max}(t)} | \gamma_{\{0,\tau\}} \rangle = e^{-\Delta s_{\max}(\tau)} \quad \text{for } 0 \le \tau \le t$$



• Both terms fulfill fluctuation theorems:

$$\langle e^{-\Delta s_{\rm mar}(t)} \rangle = 1 \qquad \langle e^{-\Delta s_{\rm unc}(t)} \rangle = 1$$

• Both terms are non-negative:

 $\langle \Delta s_{\rm mar}(t) \rangle \ge 0 \qquad \langle \Delta s_{\rm unc}(t) \rangle \ge 0$

SCUOLA NORMALE SUPERIORE

• Fluctuation theorem at stopping times

 $\langle e^{-\Delta s_{\max}(\mathcal{T})} \rangle = 1 \implies \langle \Delta s_{\mathrm{tot}}(\mathcal{T}) \rangle \ge \langle \Delta s_{\mathrm{unc}}(\mathcal{T}) \rangle \quad \text{may be either positive or negative}$

 ${\mathcal T}$ stochastic stopping-time

Example: 2-level system with orthogonal jumps

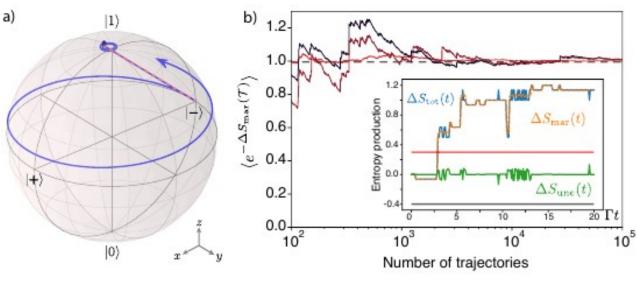
Minimum between first-passage time with 1 or 2 thresholds and a fixed maximum t

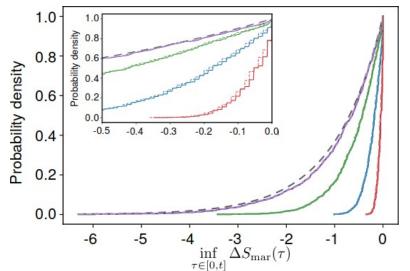
$$\Pr\left(\inf_{\tau\in[0,t]}\Delta s_{\max}(\tau)\leq\xi\right)\leq e^{-\xi}$$

Modified infimum law:

$$\langle \inf_{\tau \in [0,t]} \Delta s_{tot}(\tau) \rangle \ge -1 - \frac{\pi_{max}}{\pi_{min}}$$

max and min eigenvalues of the steady state





- Introduction
 - Fluctuation theorems
 - Martingale theory for entropy production
- Framework
 - Quantum-jump trajectories
 - Entropy production and fluctuation theorems
- Quantum martingale theory
 - Classical-Quantum split
 - Stopping times and extreme-events statistics
- Main conclusions

Main conclusions

- For nonequilibrium steady states, the entropy production fulfills stronger constraints than fluctuation theorems (Martingale property).
- The Martingale property may break down due to quantum fluctuations induced by measurements.
- A quantum martingale theory can be however developed by performing a quantum-classical split of the entropy production, where both terms fulfill some generalized form of fluctuation theorem.
- We obtain quantum corrections in several results for stopping times fluctuations and finite-time infimum, whose consequences are still to be fully understood.

Outlook

• Effects of coherence in probability distributions of thermodynamic quantities ?!

THANK YOU

for your attention

FOR MORE INFORMATION:

G. Manzano, R. Fazio, and É. Roldán, PRL 122, 220602 (2019)