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Fluctuation Theorems  Refined second law

Extend the second law to small systems subjected to fluctuations, where thermodynamic quantities are random variables

pﬂ{'w}
Jarzynski equality: (e”W/T) = o=AF/T
Crooks work FT:  pr(W) = pr(—=W) c(W—AF)/T
| (W)
J (p\ (W(t))y > AF Pr(W — AF < ¢) < e~¢/ksT
AF W [pN nm] C. Jarzynski, EPJ B (2008); Annu. Rev. Condens. Matter Phys. (2011)

Stochastic entropy production: Asio(t) = As(t) — Q(t)/T  (system + environment)

Key: system entropy per trajectory s(t) = —log p;(y(t)) U. Seifert PRL (2005); Rep. Prog. Phys. (2012)
P(0n) = Ao >0
log | ——— = Asiot ()
P (W{O,t})

<€_A8t0t>»y =1 = <A3tot>fy > 0
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Martingales

In nonequilibrium steady states, the stochastic process e Aswot(t) js 3 MARTINGALE:

_Astot (’7')

<€_A$t0t(t) Yi0,73) =€ for 0<7<t

average conditioned on trajectory at past times [I. Neri, E. Rold4n, and F. Jiilicher, PRX (2017)]

Introduced in M 4
probability theory
by Paul Lévy in
1934 and named
by Ville (1939)

M (t) < oo is Martingale iff:
<M(t)|’}/{0’7-}> — M(T) I . time

Fortimes 0<7<t¢ %

- More general than the Fluctuation Theorem !! 7 =0 = (e 2%wet()) =1

« Martingale processes are well known in mathematics of finance —» No arbitrage opportunities


https://en.wikipedia.org/wiki/Paul_L%C3%A9vy_(mathematician)
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Implications for entropy production

* Statistics of EP finite-time infima: via Doob’s maximal inequality

(@) A Extreme reductions of entropy:
&
E Pr (infTE[O,t]AStot (7') S 5) S €_€
g_ oL 2 t Time} _ _
.y Infimum law:
o
z PR O

« Statistics of EP at (random) stopping times: via Doob’s optional sampling theorem

Stopping times: times at which some condition of ®) x s,
the process is verified for the first time

Fluctuation theorems for stopping times 7

<6—A8tot(7-)> — 1

Entropy production

[I. Neri, E. Roldén, and F. Jilicher, PRX (2017)]
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Stopping times are ubiquitous in many autonomous processes...

Feynman’s ratchet
Axle and wheel

Cellular functions: bacterial cell cycle

Binary Fission in Prokaryotes A PHWI

Replication of the circular prokaryotic chromosome begins at the origin of replication
and continues in both directions at once. \

Origin of replication

Prokaryotes have a single,
circular chromosome

FtsZ protein

The cell begins to elongate. FisZ proteins migrate toward the midpoint of the cell. H

Spring

The duplicated chromosomes separate and continue to move away from each other n H a.h: h et 7
toward opposite ends of the cell. FtsZ proteins form a ring around the periphery of the

midpoint between the chromosomes.

Cleavage furrow

Load Vane

FtsZ ring

Thermal models for clocks

The FtsZ ring directs the formation of a septum that divides the cell. Plasma membrane u TH
and cell wall materials accumulate.

Septum

Register

Detector

>
-—

Septum

After the septum is complete, the cell pinches in two, forming two daughter cells. FisZ is H
dispersed throughout the cytoplasm of the new cells.

>
-—

>
-—

[P. Erker et al., PRX (2017)]
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(@)

“Trajectories” comprise all the measurements in system and environmental ancillas:

Y= {nv (:LL17V1)7 (:uQa V2>7 L) (:LLN, VN)7m}

The continuous limit can be obtained if the following limit exist:

)¢ )y ()
N—-oco dt—0 lim & s ) = ps

— L = finite
dt—0 dt l(pt)
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Quantum jump trajectories:

Pt ——» praar =E(py) = Z MjptM}L (Kraus representation)
J

Measurements backaction can be recasted as: Probability during any dt:
My(dt) =1 — dt(:H + Z L};Lk/2) smooth evolution > Bt)=1—dt Z(LLLkﬁ
k k
My (dt) = VdtLy, quantum jump of type k —»  P(t) = dt{LJ{CLk)t

Example: Optical cavity photo-detection

single trajectory average: exponential decay Spontaneous emission
10 10
) — : T
- My(dt) =1 —dt(iH +~va'a/2)
4—,&& ) = 'I-? 5
2 = M, (dt) = +/dtvy a
0 |
0 1 1
xt
Books: H. M. Wiseman and G. J. Milburn, Quantum measurement and control (2010). il

H. Carmichael, An open systems approach to quantum optics (1993). —
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1)

Evolution under environmental monitoring

Assuming an initial pure state and keeping the record of the outcomes:

Stochastic Schrodinger equation

Introducing Poisson increments dNj(t) associated to the number of jumps Ny (t) 0) g Ty

' L'L), —LTL
dly), = dt (;H+Z< : k>t2 : k>w>t+Zde(t> LT’”" —T|[¥)
k k (L L)+

Smooth evolution (No jump) Jump of type k

The average evolution verifies a Lindblad master equation:

: 1 1
pt = Li(pt) = —#H, pt] + E (LrpL} — i{LzszaPtD
k |71) [1)

STEADY STATE: micro-states / \ i
r= Y mmml Ay
l

%) |x3) |xs)
,Ct (7T ) =0 \

Classical Markov Quantum

populations/probabilities of micro-states
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* Trajectories: Initial and final measurements (system) + jumps and times (environment):

Y{0,4} = {n(O), 726, n(t)} with environmental record 726 = {(k1,t1), (k2,t2), ..., (kj,ts)}

* Entropy production: system environment
entropy entropy
J
P s
Asin(t) = o (L)) o (T200) 4 37 A
P(V{O,t}) / Ton(t) j=1 \
(As(t))y = AS =0 t .
! steady state Z<A8k:j (t))y = _/0 dt/Tr[penv In peny |
J
* Local detailed-balance
Ase™ /2 11 e.g. for a thermal bath:
. . . . . S
* For Lindblad operators coming in pairs: Ly = e~k Lk,, Aszrjlv _ —BAEkj

 Fluctuation theorems: <6_A8t°t(t)>7 =1 = (Asu(t))y =0

[G. Manzano, J.M. Horowitz, and J.M.R. Parrondo, PRX (2018);
J.M. Horowitz and J. M. R. Parrondo, NJP (2013); J.M. Horowitz, PRE (2012)]
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 Does classical martingale theory for entropy production apply to quantum thermo?

_Astot (’T)

<€—A8tot(t)‘fy{0,7_}> = e fOI‘ O S T St

average conditioned on trajectory at past times [I. Neri, E. Rold4n, and F. Jiilicher, PRX (2017)]

* Quantum generalization becomes problematic !

* Entropy production needs
measurements on the system.

e Sometimes it is not well defined at
intermediate times

Entropy production, ASie
=

| =l | T
ol | y
[ | i * How to make meaningful conditions on
) past times ?
0 t
v Time I1r.1)
12)(7)) in a superposition of eigenstates (of the steady state) \
[EP would depend on an eventual measurement]
\J tra) lms)

11(7)) in a eigenstate (microstate) of the steady state [well defined without measurements] Classical Markov
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* Quantum fluctuations spoil the Martingale property!

<€—Astot (t) ‘,7[0 T]> — e—Astot (T)+Asunc(7) for 0<7<¢

* The extra term measures the entropic value of the uncertainty in |¢>

“Uncertainty” entropy production
stochastic entropy of state |, ;)

/

7Tn
Asunc(t) = —log (t) = —log my, (1) + 10g<7T>¢(t)
(T)y(t)

.
AN

a

stochastic entropy of [(%))

where: prob microstate  conditional prob.

squared fidelity between
<7T>w(t) = ((t)|m[(t) Zﬂz (t)]ms) |2 the steady state ™ and [¢(t))

In the classical limit: |Y(t)) = |[Tp@)) V& —= Asunc(t) =0 Vit

The uncertainty EP fulfills: <e‘A8unC(t) Vo) =1 0<7<t
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« Decomposition of the stochastic EP:

AStOt (t) — ASUDC (t) =+ ASmar (t) ASlmau"(t) == 10g ( =" ) + Z Asenv
w(t)

« Asmar(t) is a “classicalization” of the entropy production

Martingale property: <6—A3mar(t) W{O,T}> = e_ASmar(T) for 0<7<¢

25 +

oo |k « Both terms fulfill fluctuation theorems:
o H LR

. | ) _Asmar - _Asunc —
T ;wf || e e

ok

4 075 - I 1
~1.00 * Both terms are non-negative:

-1.25 -

= <A5mar(t)> Z 0 <A8unc(t)> 2 0

0 50 100 150 200 250 300
Time

—=1.50 -
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Fluctuation theorem at stopping times

<6_A8mar(7)> =1 = <A8t0t (T)> > <A8unc(T>> may be either positive or negative

T stochastic stopping-time 3

Example: 2-level system
with orthogonal jumps

0a ':‘Hll_*__ 1'11'"1’_ —J"

"!'\-I" 1TiE |1:_.'

Minimum between
first-passage time

with 1 or 2 thresholds : ' O e
. . - 1 1
and a fixed maximum t : ] 5 0.0+ —~ T .
|E"' _,.--x‘_h 1ﬂ 10 'D 1[]
X o y Number of trajectories

Finite-time infimum inequality:

Pr (infTE[O,t]ASmar(T) < 5) < 6_5

Modified infimum law:

<infT€[O,t]ASt0t (7)) = —1— L

Tmin

Probability density

max and min eigenvalues of the steady state
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Main conclusions

* For nonequilibrium steady states, the entropy production fulfills stronger
constraints than fluctuation theorems (Martingale property).

* The Martingale property may break down due to quantum fluctuations induced by
measurements.

* A quantum martingale theory can be however developed by performing
a quantum-classical split of the entropy production, where both terms fulfill some
generalized form of fluctuation theorem.

* We obtain quantum corrections in several results for stopping times fluctuations
and finite-time infimum, whose consequences are still to be fully understood.

Outlook

» Effects of coherence in probability distributions of thermodynamic quantities ?!
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THANK YOU

for your attention

FOR MORE INFORMATION:

G. Manzano, R. Fazio, and E. Rold4an, PRL 122, 220602 (2019)
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