Imaging work and dissipation in quantum Hall state in graphene

Eli Zeldov – Weizmann Institute of Science

SQUID on tip

SQUID on tip

Thermal imaging techniques

Mecklenburg *et al.*, Science (2015) Kim *et al.*, ACS Nano (2012) Menges *et al.* Nat. Commun. (2016) Kucsko *et al.*, Nature (2013) Reparaz *et al.*, Rev. Sci. Instrum. (2014)

Thermal noise: $S_T^{1/2} < 1 \,\mu\text{K/Hz}^{1/2}$

Thermal imaging techniques

Thermal noise: $S_T^{1/2} < 1 \ \mu \text{K/Hz}^{1/2}$

Dissipation in hBN encapsulated graphene

0.3 T_{ac} [mK] 1.0

Dissipation from a single atomic defect in graphene

Dis Bipatization in ansiphenetere codefect of right applene

Vacancies and adatoms form localized states near Dirac point in graphene

Pereira et al., PRL 96 (2006) Bistritzer & MacDonald, PRL 102 (2009) Song, Reizer & Levitov, PRL 109 (2012) González-Herrero et al., Science 352 (2016) Mao et al., Nat. Phys. 12 (2016) <u>300 nm</u>

Atomic source of phonons

[µK]

40

0

-40

 $V_{ta} = 2.0 [V]$

Resonant inelastic scattering by a single localized state

Spectroscopy of bulk defects

Spectroscopy of edge defects

Guiding principles of idealized QH

I. QH plateau

Chiral edge channels carrying current with no dissipation. Dissipation only at contacts.

II. Plateau transition Dissipation in the bulk

III. Topological state is robust against local perturbations

- Guiding principles of idealized QH
- I. QH plateau

Chiral edge channels carrying current with no dissipation. Dissipation only at contacts.

II. Plateau transition Dissipation in the bulk

III. Topological state is robust against local perturbations

Vasseur, PRB 92 (2015)

- Guiding principles of idealized QH
- I. QH plateau

Chiral edge channels carrying current with no dissipation. Dissipation only at contacts.

II. Plateau transition Dissipation in the bulk

- Guiding principles of idealized QH
- I. QH plateau

Chiral edge channels carrying current with no dissipation. Dissipation only at contacts.

II. Plateau transition Dissipation in the bulk

III. Topological state is robust against local perturbations

Work and dissipation

Rokni and Levinson, PRB 52, 1882 (1995)

Work and dissipation

 $v \sim -1.9$

Edge reconstruction and separation of work and dissipation

Edge reconstruction and separation of work and dissipation

V_{tg} *tSOT hBN/Gr/hBN Au plunger gate* V_{pg} *SiO*₂ *Si*

Weizmann team

- A. Marguerite A. Aharon D. Halbertal K. Bagani
- J. Sarkar

A. Uri J. Cuppens Y. Myasoedov M. Rappaport I. Marcus

Collaborators

J. Birkbeck, Manchester D. Perello, Manchester M. Ben Shalom, Manchester A. K. Geim, Manchester L. S. Levitov, MIT M.E. Huber, Denver

Summary

Nanoscale thermal imaging of quantum systems with sub 1 µK sensitivity

Spectroscopy of edge states in graphene

Detection of phonon emission from a single atomic defect

Inelastic electron scattering by a resonant localized state

Independent imaging of work and dissipation

