

Catalytic cooling and the catalytic entropy conjecture

Henrik Wilming [ETH Zürich]

Joint work with: Paul Boes, Jens Eisert, Rodrigo Gallego [Freie Universität Berlin] Markus P. Müller [IQOQI Vienna, Perimeter Institute]

> Phys. Rev. Lett. 122, 210402 (2019) ArXiv:1807.08773

> > QTD 2019, Espoo, Finland

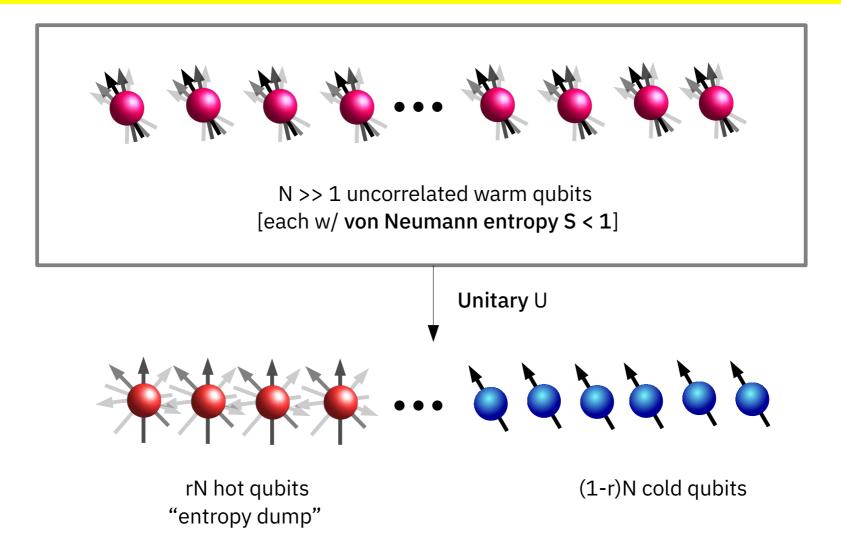
Main aim of this talk: A new way to think about von Neumann entropy

$$S(\rho) = -\operatorname{Tr}\left(\rho \log \rho\right).$$

A few results and an open problem.

Applications in thermodynamics:

- Algorithmic cooling without *iid* limit
- Interesting ways to circumvent fluctuation relations and engineer correlated work-distributions (see **Nelly's talk** later today)



As $N \rightarrow \infty$, $r \approx S$ is both **necessary and sufficient** for arbitrarily good conversion. (Abstractly: Same as compressing information).

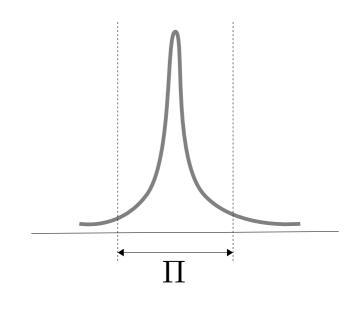
(Shannon 1948, Schumacher 1993, Schulman & Vazirani 1999)

For large n, tensor product state is highly peaked. Well approximated by projection on **typical subspace**:

$$\rho^{\otimes n} \approx \Pi \rho^{\otimes n} \Pi$$
$$\dim(\Pi) \approx 2^{nS(\rho)}$$

We can hence **choose a basis** such that

$$\rho^{\otimes n} \approx |0\rangle \langle 0|^{\otimes (1-S)n} \otimes \sigma$$



Similar reasoning applies in many different settings and for other standard entropic quantities:

Quantity	Task
Free energy	Macroscopic work extraction
Entanglement entropy	Entanglement distillation
Mutual information	Compression of correlated information sources
Relative entropy	Hypothesis testing

We always require an asymptotic *iid* limit to give operational interpretations to standard entropic quantities.

Tasks in asymptotic *iid* setting:

$$\rho^{\otimes n} \longrightarrow \sigma^{\otimes m}$$

Controlled by **von Neumann entropy** (or cousins like relative entropy, mutual information etc.)

Single-shot setting:

 $\rho \longrightarrow \sigma$

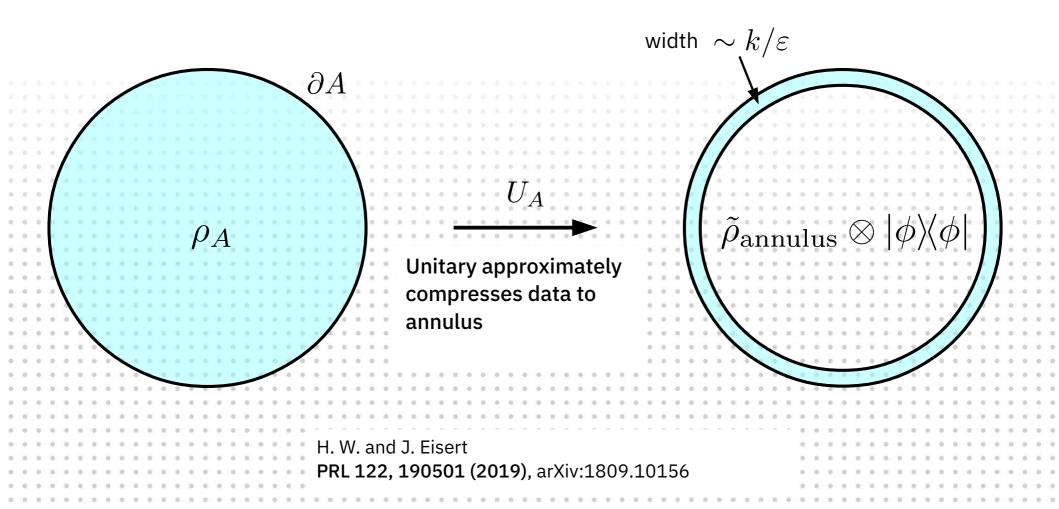
(these may be high-dimensional and consist of many correlated subsystems) Controlled by (smoothed) Rényi entropies (or their relatives, s.t. single-shot free energies)

Is the *iid* limit really necessary or can we give single-shot interpretations to standard entropic quantities in certain settings?

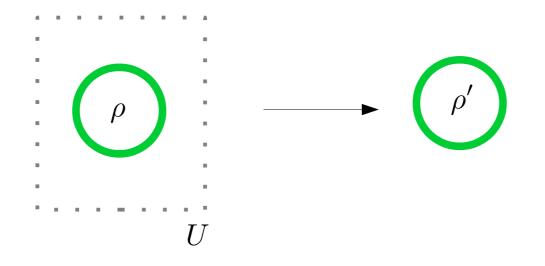
Example outside of thermodynamics: Holographic compression from the Area Law

Theorem (Holographic compression, informal)

In a many-body system fulfilling an Area Law in terms of von Neumann entropy, one can unitarily compress all the information contained in a large region of space onto a thin boundary.

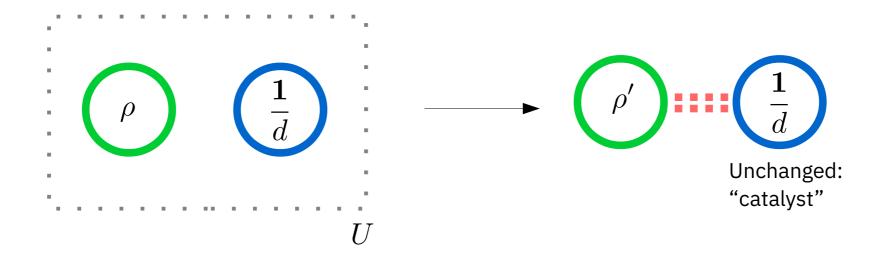


What about general information theory and thermodynamics?



Q: Which states can be reached?

A: All states with the same spectrum.



Q: Which states can be reached by choosing different unitaries?

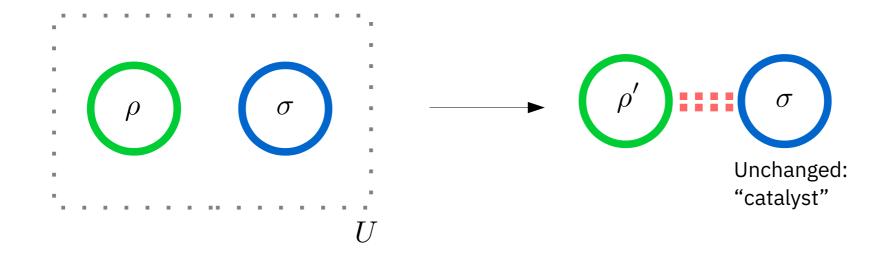
A: All states that are **majorized** by ρ .

All Rényi-entropies can only increase!

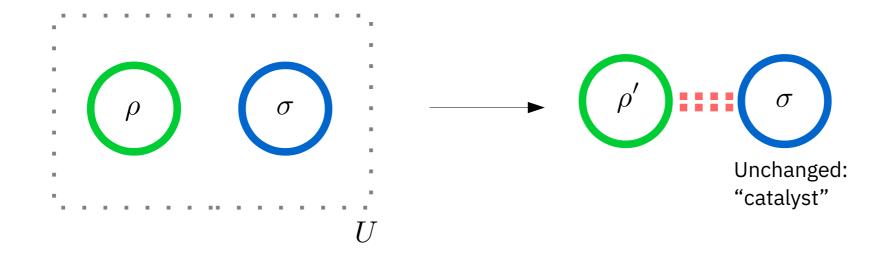
Theorem

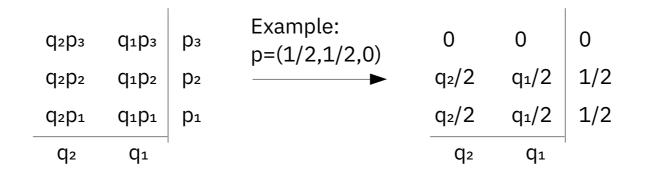
Suffices that d is larger than $\sqrt{\operatorname{rank}(\rho')}$

P. Boes, H.W., R. Gallego, J. Eisert, *PRX* 8 (2018). arXiv:1804.03027

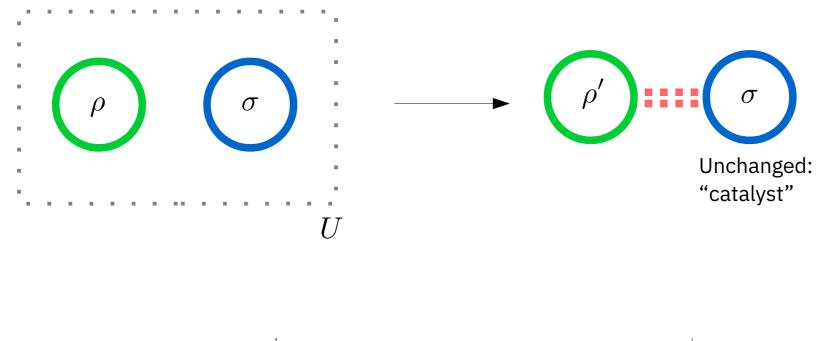


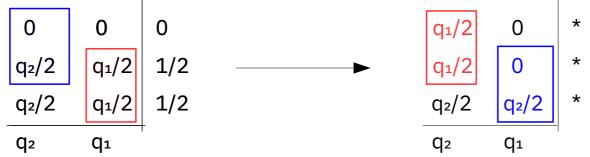
Q: Which states can be reached if we can choose catalyst and unitary?



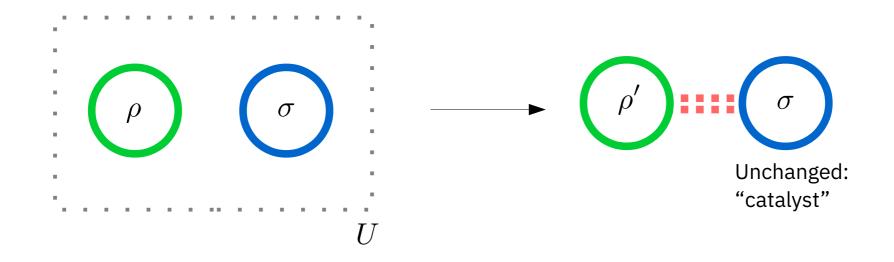


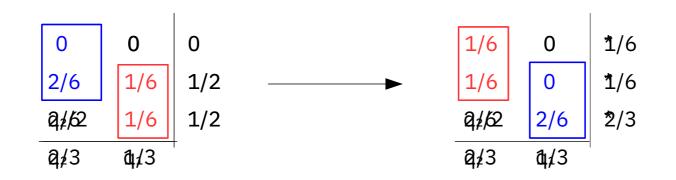
Step 1: Write bipartite distribution as table.



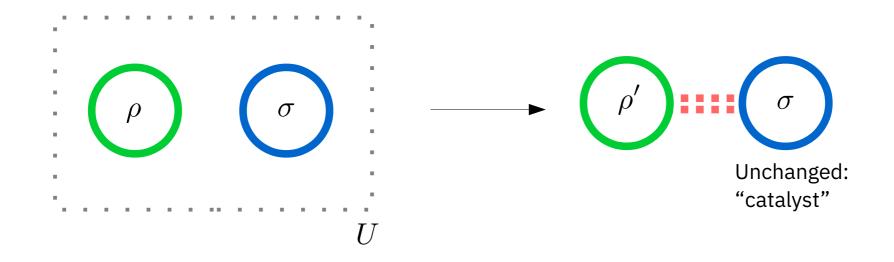


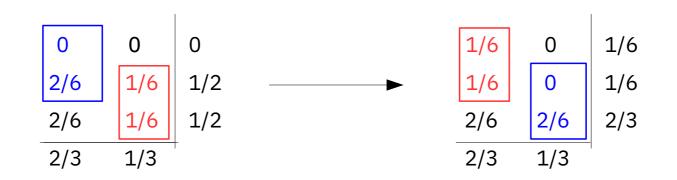
Step 2: Choose a permutation on the jointdistribution.





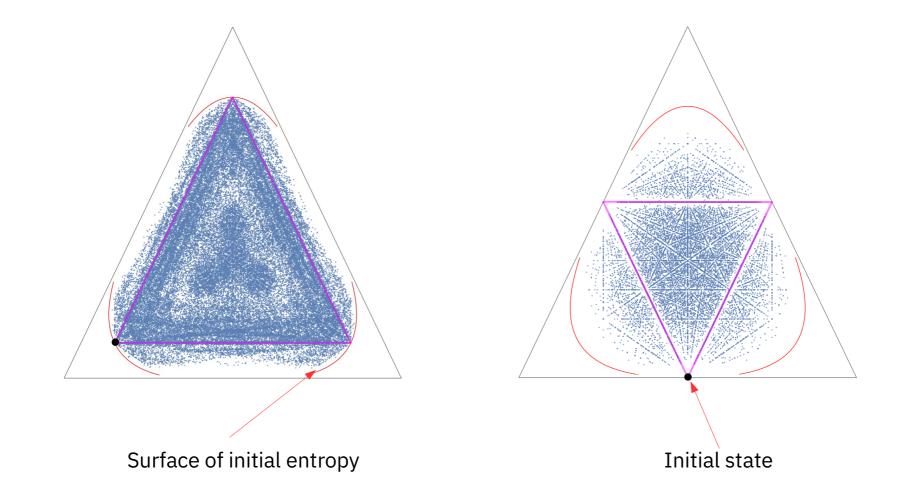
Step 3: Solve equations to ensure "catalyticity".



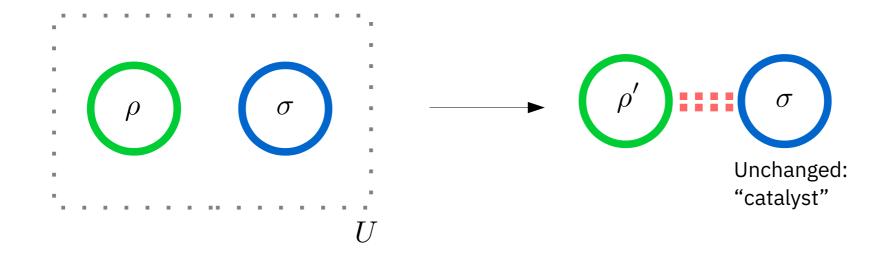


Largest probability increased from 1/2 to 2/3.

 \rightarrow Cannot be governed by majorization

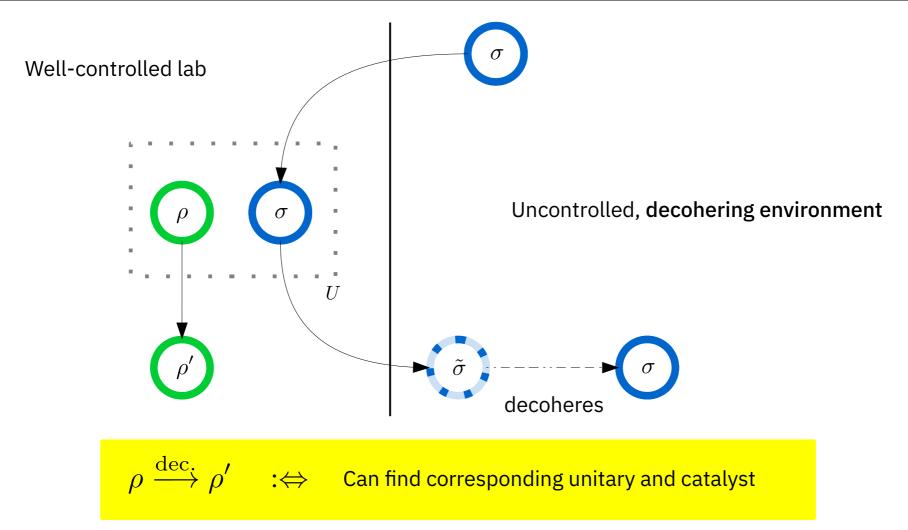


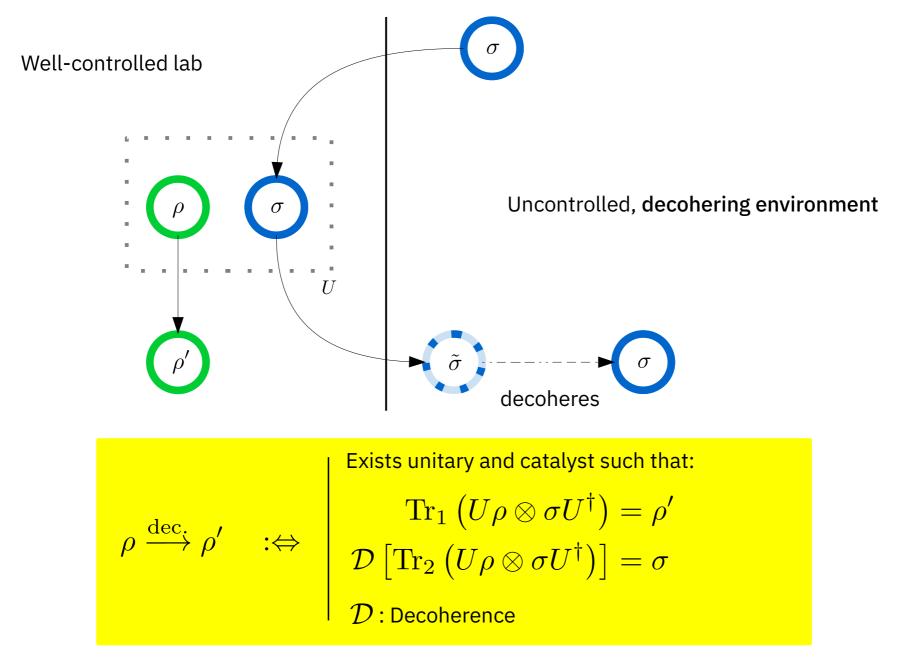
Region inside pink triangle: States reachable using maximally mixed catalysts ("permutahedron").



Q: Which states can be reached if we can choose unitary and fitting catalyst?

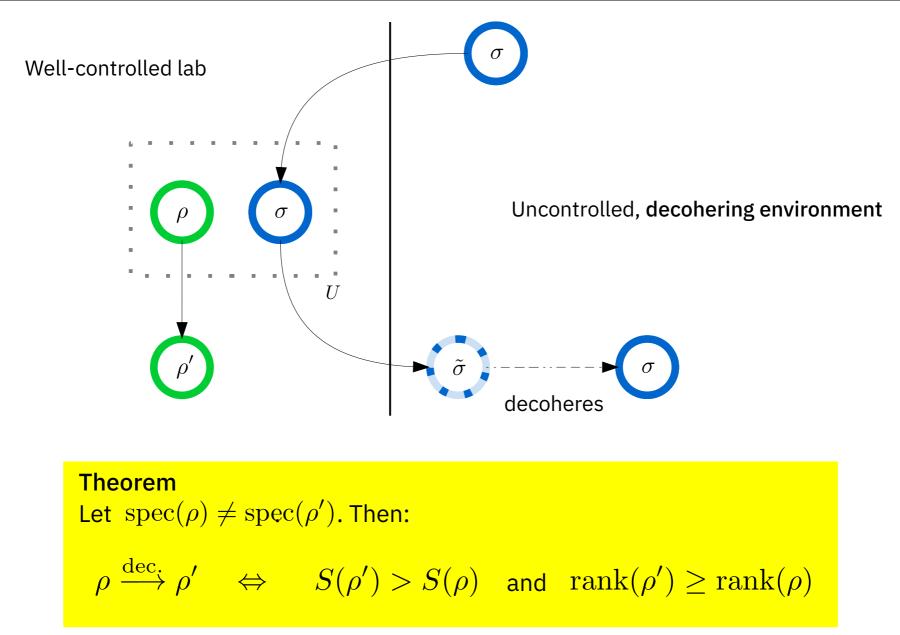
A: Catalytic entropy conjecture?! (later)





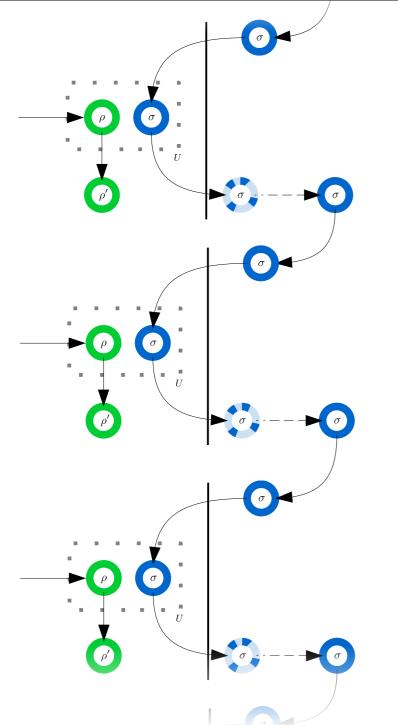
Q: Which states can be reached?

A characterization of von Neumann entropy without *iid* limit



Slight generalization of a result by Markus P. Müller \rightarrow see his talk on Thursday!

Application: Catalytic cooling



Use a **single** catalyst to transform many copies. Each undergoes transition

$$\rho \longrightarrow \rho'$$

Example:

$$\rho = \chi \otimes \chi, \quad S(\chi) < \frac{1}{2}$$

 $ho' = rac{\mathbf{1}}{2} \otimes |0
angle \langle 0|_{arepsilon}$

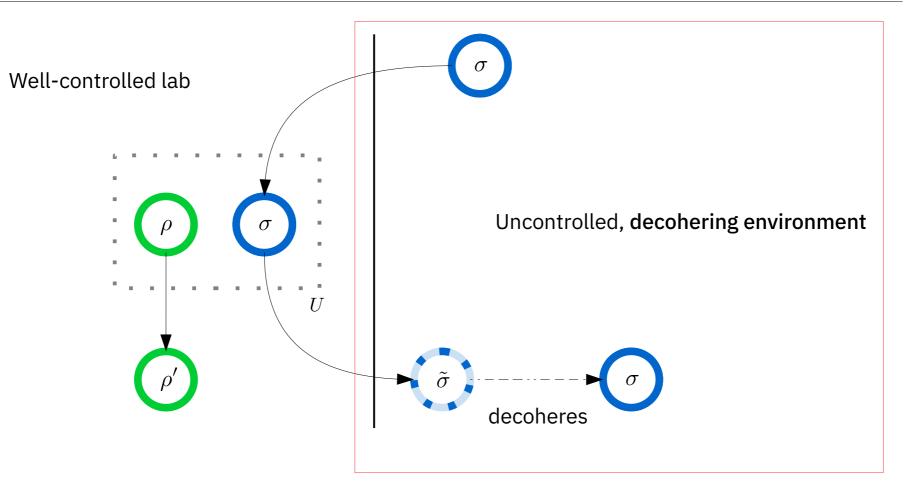
Full-rank state arbitrarily close to |0>

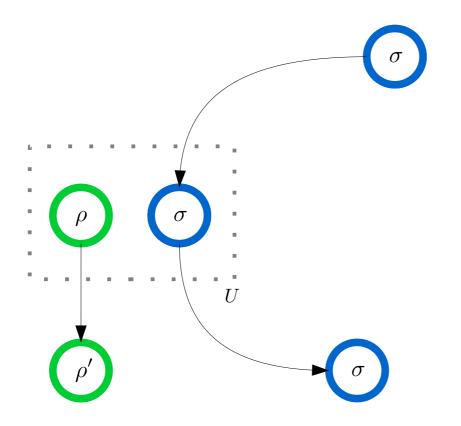
Half the systems cooled to (almost) zero temperature, half heated up to infinite temperature.

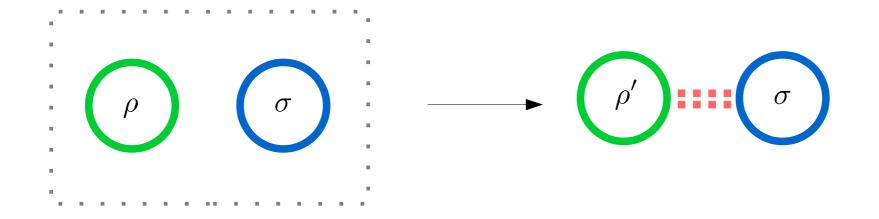
→ Algorithmic cooling without iid limit.

However, correlations are created:

 $\rho^{\otimes n} \longrightarrow \rho'_{1....n} \neq {\rho'}^{\otimes n}$

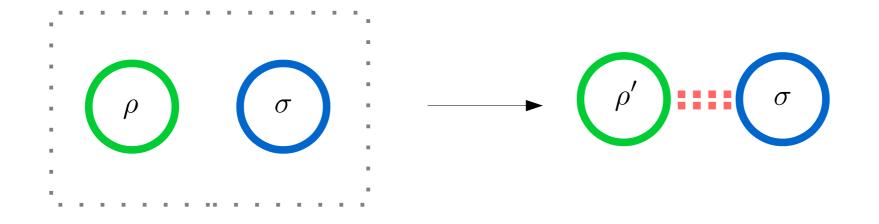






Q: Which states can be reached if we can choose catalyst and unitary?

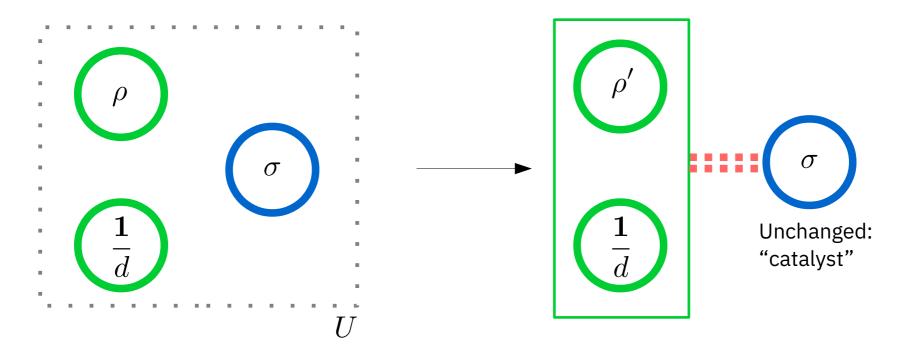
 $ho \longrightarrow
ho' \quad : \Leftrightarrow \quad$ Can find corresponding unitary and catalyst



Catalytic entropy conjecture

Let $\operatorname{spec}(\rho) \neq \operatorname{spec}(\rho')$. Then:

 $\rho \longrightarrow \rho' \quad \Leftrightarrow \quad S(\rho') > S(\rho) \quad \text{and} \quad \operatorname{rank}(\rho') \ge \operatorname{rank}(\rho)$



Let $\operatorname{spec}(\rho) \neq \operatorname{spec}(\rho')$. Then the following are equivalent:

i) $S(\rho') > S(\rho)$ and $\operatorname{rank}(\rho') \ge \operatorname{rank}(\rho)$

ii) There exists some finite dimension *d* such that

$$ho \otimes rac{\mathbf{1}}{d} \longrightarrow
ho' \otimes rac{\mathbf{1}}{d}$$

Monotone: Function f on the set of density matrices such that $\rho \longrightarrow \rho' \Rightarrow f(\rho) \leq f(\rho')$ Call f additive if $f(\rho_1 \otimes \rho_2) = f(\rho_1) + f(\rho_2)$.

Well-known in resource theories and other settings. Examples:

Quantity	"Operations"
Free energies	Thermal operations
Entanglement entropies	Local operations & classical communication (LOCC)
Asymmetry monotones	Symmetric operations
Entropy production	Markovian open system dynamics

Monotone: Function *f* on the set of density matrices such that

 $\rho \longrightarrow \rho' \quad \Rightarrow \quad f(\rho) \le f(\rho')$

Call *f* additive if $f(\rho_1 \otimes \rho_2) = f(\rho_1) + f(\rho_2)$.

Theorem (Quasi-unique monotone, informal) The von Neumann entropy is the **unique** (up to constants) additive and continuous monotone for catalytic transitions.

Why? Any monotone has to be **sub-additive**:

 $f(\rho_{12}) \le f(\rho_1) + f(\rho_2)$

Von Neumann entropy is the only additive, continuous and subadditive quantity (up to constants).

- Single-shot chacterization of von Neumann entropy using catalysts & decoherence
- Catalytic entropy conjecture

Let $\operatorname{spec}(\rho) \neq \operatorname{spec}(\rho')$. Then:

 $\rho \longrightarrow \rho' \quad \Leftrightarrow \quad S(\rho') > S(\rho) \quad \text{and} \quad \operatorname{rank}(\rho') \ge \operatorname{rank}(\rho)$

Applications in thermodynamics:

- Catalytic cooling: Algorithmic cooling with optimal "efficiency" in the single shot
- Circumventing Fluctuation theorems: Using catalysts it's (in principle) possible to extract macroscopic work from macroscopic thermal systems with high probability while respecting 2nd Law. (see talk by Nelly)

Thank you for your attention! Phys. Rev. Lett. 122, 210402 (2019) ArXiv:1807.08773

Holographic compression: PRL 122, 190501 (2019), arXiv:1809.10156