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 Jarzynski equality: 

 

𝑒−𝑊/𝑘𝐵𝑇 = 𝑒−∆𝐹/𝑘𝐵𝑇 

 

System Bath, 𝑇 

𝑄 𝑊 
Operator 

System energy change ∆𝑈 = 𝑊 + 𝑄 

Context 

C. Jarzynski, Phys. Rev. Lett. 78, 

2690 (1997) 



 Jarzynski equality for a single heat bath : 

 

𝑒−𝑊/𝑘𝐵𝑇 = 𝑒−∆𝐹/𝑘𝐵𝑇 

 
→ Work can be extracted beyond ∆𝐹 at the single trajectory level 

 

System Bath, 𝑇 

𝑄 𝑊 
Operator 

System energy change ∆𝑈 = 𝑊 + 𝑄 

Context 

C. Jarzynski, Phys. Rev. Lett. 78, 

2690 (1997) 



Experiments with mesoscopics 

O.-P. Saira et al., 

Phys. Rev. Lett. 109, 

180601 (2012) 

 Test of Jarzynski equality with a single 

electron box 

 

 Gate driving cycle, measurement of heat 

exchange (tunneling events) during the cycle 

 



 Jarzynski equality for a single heat bath : 

 

𝑒−𝑊/𝑘𝐵𝑇 = 𝑒−∆𝐹/𝑘𝐵𝑇 

 
→ Work can be extracted beyond ∆𝐹 at the single trajectory level 

→ How to optimize (= maximize, make likely…) single-shot work 

extraction ? 

System Bath, 𝑇 

𝑄 𝑊 
Operator 

Context 

N. Y. Halpern et al., New. J. Phys. 17 095003 (2015) 

V. Cavina et al., Sci. Rep. 6, 29282 (2016) 

C. Jarzynski, Phys. Rev. Lett. 78, 

2690 (1997) 



Normal-Insulator-Superconductor tunnel junction 

 Fabrication: EBL+ angle evaporation + low pressure 

oxidation of Aluminum 



NIS tunnel junction 

𝑇𝑠 = 0 𝑇𝑠 ≠ 0 

 Fabrication: EBL+ angle evaporation + low pressure 

oxidation of Aluminum 

 

 Thermally activated tunneling rate: 

 

Γ𝑆→𝑁 𝜇𝑁

=
1

𝑒2𝑅𝑇
 𝑑𝐸[1 − 𝑓 𝐸 − 𝜇𝑁, 𝑇𝑁 ]𝑓 𝐸, 𝑇𝑠 𝑛𝑠(𝐸) 

 



NIS tunnel junction 

𝑇𝑠 = 0 𝑇𝑠 ≠ 0 

 Fabrication: EBL+ angle evaporation + low pressure 

oxidation of Aluminum 

 

 Thermally activated tunneling rate: 

 

Γ𝑆→𝑁 𝜇𝑁

=
1

𝑒2𝑅𝑇
 𝑑𝐸[1 − 𝑓 𝐸 − 𝜇𝑁, 𝑇𝑁 ]𝑓 𝐸, 𝑇𝑠 𝑛𝑠(𝐸) 

 

 Use of superconductor: energy gap = low rates 

 



Coulomb blockade 

 Small metallic island, with small capacitance 𝐶Σ dominated by tunnel 

junctions 

 

 Ultrasmall junctions (area < 100 nm x 100 nm): 𝐶Σ ≤ 1 fF 

 

 Energy cost of tunneling: charging energy 𝐸𝑐 =
𝑒2

2𝐶Σ
 

 

 Two junctions: SINIS transistor for transport measurements → 𝐸𝑐, 𝑅𝑇 can be 

measured 

 

 



Single electron box 

 Hamiltonian for equivalent circuit: 𝐻 𝑛, 𝑛𝑔 = 𝐸𝐶(𝑛 − 𝑛𝑔)
2 

 

 Tunable electrostatic energy with gate voltage 𝑛𝑔 =
𝐶𝑔𝑉𝑔

𝑒
 

 

 𝐸𝐶~1 K: occupation of two charge states 𝑁0 + 𝑛, 𝑛 = 0,1 for 

𝑛𝑔 ∈ 0; 1  

 



𝐻 𝑛, 𝑛𝑔 = 𝐸𝐶(𝑛 − 𝑛𝑔)
2 

Single electron box 

Normal-Insulator-Superconductor tunnel junctions + Coulomb blockade 



∆𝐸 𝑛𝑔  

𝐻 𝑛, 𝑛𝑔 = 𝐸𝐶(𝑛 − 𝑛𝑔)
2 

 Electron tunneling = heat 

exchange 

 

 ∆𝐸 𝑛𝑔 = 𝐸𝐶(1 − 2𝑛𝑔) 

 

Single electron box 

𝑒− 

Normal-Insulator-Superconductor tunnel junctions + Coulomb blockade 



∆𝐸 𝑛𝑔  

𝐻 𝑛, 𝑛𝑔 = 𝐸𝐶(𝑛 − 𝑛𝑔)
2 

 Electron tunneling = heat 

exchange (stochastic) 

 

 ∆𝐸 𝑛𝑔 = 𝐸𝐶(1 − 2𝑛𝑔) 

 

 Gate driving 𝑛𝑔(𝑡) = work applied 

𝑊[𝑛 𝑡 , 𝑛𝑔(𝑡)] =  𝑑𝑡𝑛 𝑔(𝑡)
𝜕𝐻

𝜕𝑛𝑔
  

𝑊 

Single electron box 

𝑒− 

Normal-Insulator-Superconductor tunnel junctions + Coulomb blockade 



n=1 

SEB 



n=1 

n=0 

SEB 



 SET detection: 

sensitive electrometry 

 

 Real-time monitoring 

of electron jumps in 

the SEB (« system ») 

n=1 

n=0 

SEB 



∆𝐸 𝑛𝑔 = 𝐸𝐶(1 − 2𝑛𝑔) 

 Rate equations: 

 

 
𝜕𝑡𝑝0 = −Γ+𝑝0 + Γ−𝑝1
𝜕𝑡𝑝1 = −Γ−𝑝1 + Γ+𝑝0

 

 

 

 Detailed balance at equilibrium: 

 
𝑝0
𝑝1

=
Γ−

Γ+
= 𝑒Δ𝐸(𝑛𝑔)/𝑘𝐵𝑇 

 

Single electron box 



∆𝐸 𝑛𝑔 = 𝐸𝐶(1 − 2𝑛𝑔) 

 Typical tunneling rates 

~ 100-300 Hz 

 

 Waiting time distribution 

for a Poisson process 

Γ− 

Γ+ 

𝑛𝑔 = 0.5 𝑛𝑔 = 0.65 

Single electron box 



 Jarzynski equality for a single heat bath: 

 

𝑒−𝑊/𝑘𝐵𝑇 = 𝑒−∆𝐹/𝑘𝐵𝑇 

 
→ Work can be extracted beyond ∆𝐹 at the single trajectory level 

→ How to optimize (= maximize, make likely…) single-shot work 

extraction ? 

System Bath, 𝑇 

𝑄 𝑊 
Operator 

Context 

C. Jarzynski, Phys. Rev. Lett. 78, 

2690 (1997) 

N. Y. Halpern et al., New. J. Phys. 17 095003 (2015) 

V. Cavina et al., Sci. Rep. 6, 29282 (2016) 



∆𝐹 

𝑊 

Probabilistic work extraction 

Work applied 𝑊[𝑛 𝑡 , 𝑛𝑔(𝑡)] =  𝑑𝑡𝑛 𝑔(𝑡)
𝜕𝐻

𝜕𝑛𝑔

𝑇

0
 



∆𝐹 

𝑊− 
𝑊 

Success 

Requirements for the driving protocol over a cycle: 

 

 Bound on minimum work extracted 𝑊− − ∆𝐹 if successful attempt 

 

Probabilistic work extraction 

Work applied 𝑊[𝑛 𝑡 , 𝑛𝑔(𝑡)] =  𝑑𝑡𝑛 𝑔(𝑡)
𝜕𝐻

𝜕𝑛𝑔

𝑇

0
 



∆𝐹 

𝑊− 𝑊+ 
𝑊 

Success Failure 

Requirements for the driving protocol over a cycle: 

 

 Bound on minimum work extracted 𝑊− − ∆𝐹 if successful attempt 

 

 Bound on maximum work paid 𝑊+ − ∆𝐹 if failed attempt 

 

 

Probabilistic work extraction 

Work applied 𝑊[𝑛 𝑡 , 𝑛𝑔(𝑡)] =  𝑑𝑡𝑛 𝑔(𝑡)
𝜕𝐻

𝜕𝑛𝑔

𝑇

0
 



∆𝐹 

𝑊− 𝑊+ 
𝑊 

Success Failure 

Requirements for the driving protocol over a cycle: 

 

 Bound on minimum work extracted 𝑊− − ∆𝐹 if successful attempt 

 

 Bound on maximum work paid 𝑊+ − ∆𝐹 if failed attempt 

 

 Maximum probability 𝑝𝑊+ 𝑊 ≤ 𝑊−  allowed by Jarzynski’s equality 

 

𝑝𝑊+ 𝑊 ≤ 𝑊− ≤
𝑒∆𝐹/𝑘𝐵𝑇 − 𝑒−𝑊

+/𝑘𝐵𝑇

𝑒−𝑊
−/𝑘𝐵𝑇 − 𝑒−𝑊

+/𝑘𝐵𝑇
 

 

 

V. Cavina et al., Sci. Rep. 6, 
29282 (2016) 

Probabilistic work extraction 

Work applied 𝑊[𝑛 𝑡 , 𝑛𝑔(𝑡)] =  𝑑𝑡𝑛 𝑔(𝑡)
𝜕𝐻

𝜕𝑛𝑔

𝑇

0
 



V. Cavina et al., Sci. Rep. 6, 29282 (2016): 
sequence of « discrete » steps describing a 
transformation: 

 Quench: fast = no heat 

exchanged, only work 

 

 Thermalization: no work 

done, heat removed 

from/released to the bath 

 

 



 Quench: fast = no heat 

exchanged, only work 

 

 Thermalization: no work 

done, heat removed 

from/released to the bath 

 

 Large quench = splits in two 

the work distribution 

 

 

 

 𝑝0 =
1

𝑒−(𝐸𝑏−𝐸𝑎)/𝑘𝐵𝑇+1
 (Gibbs) 

 

𝑝 𝑊 = 𝑝0𝛿 𝑊 −𝑊+ + (𝟏 − 𝒑𝟎)𝜹(𝑾 −𝑾−) 

V. Cavina et al., Sci. Rep. 6, 29282 (2016): 
sequence of « discrete » steps describing a 
transformation: 



 Two « reversible » ramps, time interval ≫ characteristic tunneling time 

 

 Quench time ≪ characteristic tunneling time: no heat exchange 



 Two « reversible » ramps, time interval ≫ characteristic tunneling time 

 

 Quench time ≪ characteristic tunneling time: no heat exchange 

 

 Driving cycle: 𝑊 = −𝑄 = − ∆𝐸 𝑛𝑔 𝑡𝑖 ∆𝑛 𝑡𝑖𝑖  

→ work over one trajectory can be inferred  

 

 ca. 1000 repetitions = distribution of work fluctuations 



𝑊± = ∓∆𝐸 𝑛𝑔
∗  



𝑛𝑞 

 Depends only on state 𝑛𝑞 at quench onset: 

Type equation here. 

𝑛𝑞 = 0 1 

𝑊± = ∓∆𝐸 𝑛𝑔
∗  



𝑛𝑞 

 Depends only on state 𝑛𝑞 at quench onset: win if excited state 

𝑊 < 0 

𝑛𝑞 = 0 1 

𝑊± = ∓∆𝐸 𝑛𝑔
∗  



𝑛𝑞 

 Depends only on state 𝑛𝑞 at quench onset: 

𝑛𝑞 = 0 1 

𝑊± = ∓∆𝐸 𝑛𝑔
∗  



𝑛𝑞 

 Depends only on state 𝑛𝑞 at quench onset: lose if ground state 

𝑊 > 0 

𝑛𝑞 = 0 1 𝑊± = ∓∆𝐸 𝑛𝑔
∗  



 Δ𝑛𝑔 = 𝑛𝑔
∗ − 1/2 = 0.11 → small quench 

amplitude 

 

 Finite peak width: imperfect quasistatic ramp 

O. Maillet et al., Phys. Rev. Lett. 122, 

150604 (2019) 



 Δ𝑛𝑔 = 𝑛𝑔
∗ − 1/2 = 0.11 → small quench 

amplitude 

 

 Finite peak width: imperfect quasistatic ramp 

 ∆𝑛𝑔 = 0.17 → large quench amplitude 

 

O. Maillet et al., Phys. Rev. Lett. 122, 

150604 (2019) 



 Probability of violation decreases with 

quench amplitude Δ𝑛𝑔 = 𝑛𝑔
∗ − 1/2 

 

 Weights: Gibbs functions for 

favorable/unfavorable state just before 

the quench 

 



 Average work performed on system 

positive: in agreement with 

second law (∆𝐹 = 0 for our closed cycle) 

 

 Increases with quench amplitude: more 

irreversibility introduced 

 Probability of violation decreases with 

quench amplitude Δ𝑛𝑔 = 𝑛𝑔
∗ − 1/2 

 

 Weights: Gibbs functions for 

favorable/unfavorable state just before 

the quench 

 

O. Maillet et al., Phys. Rev. Lett. 122, 150604 (2019) 



𝑛𝑞 

 Depends only on state at quench onset: win if excited state = less likely 

 

 The larger, the less probable  

𝑊± = ∓∆𝐸 𝑛𝑔
∗  



𝑛𝑞 

 Depends only on state at quench onset: win if excited state = less likely 

 

 The larger, the less probable = how to make extraction more probable ? 

𝑊± = ∓∆𝐸 𝑛𝑔
∗  



∆𝐹 

𝑊− 𝑊+ 
𝑊 

Success Failure 

Requirements: 

 

 Bound on minimum work extracted 𝑊− − ∆𝐹 if successful attempt 

 

 Bound on maximum work paid 𝑊+ − ∆𝐹 if failed attempt 

 

 Maximum probability 𝑝𝑊+ 𝑊 ≤ 𝑊−  allowed by Jarzynski’s equality 

 

𝑝𝑊+ 𝑊 ≤ 𝑊− ≤
𝑒∆𝐹/𝑘𝐵𝑇 − 𝑒−𝑊

+/𝑘𝐵𝑇

𝑒−𝑊
−/𝑘𝐵𝑇 − 𝑒−𝑊

+/𝑘𝐵𝑇
 

 

 

V. Cavina et al., Sci. Rep. 
(2016) 

A neat limit 



∆𝐹 

𝑊− → ∆𝐹 𝑊+ → ∞ 
𝑊 

Success Failure 

If we loosen requirements: 𝑊− → ∆𝐹, 𝑊+ → ∞ 

  

 Maximum probability 𝑝∞ 𝑊 ≤ 𝑊−  allowed by Jarzynski’s equality 

 

𝑝∞ 𝑊 ≤ 𝑊− ≤ 𝑒−(𝑊
−−∆𝐹)/𝑘𝐵𝑇

𝑊−→∆𝐹
1 

 

 

A neat limit 



∆𝐹 

𝑊− → ∆𝐹 𝑊+ → ∞ 
𝑊 

Success Failure 

If we loosen requirements: 𝑊− → ∆𝐹, 𝑊+ → ∞ 

  

 Maximum probability 𝑝∞ 𝑊 ≤ 𝑊−  allowed by Jarzynski’s equality 

 

𝑝∞ 𝑊 ≤ 𝑊− ≤ 𝑒−(𝑊
−−∆𝐹)/𝑘𝐵𝑇

𝑊−→∆𝐹
1 

 

 

A neat limit 



𝑛𝑔,𝑏 > 𝑛𝑔,𝑎 > 1/2 

𝑊 = 𝑘𝐵𝑇 ∆𝑆 𝑞𝑢𝑒𝑛𝑐ℎ + 𝜑(𝑛𝑞) 

 



𝑛𝑔,𝑏 > 𝑛𝑔,𝑎 > 1/2 

∆𝑆 𝑞𝑢𝑒𝑛𝑐ℎ = 𝑆 𝑛𝑔,𝑏 − 𝑆 𝑛𝑔,𝑎  

𝑊 = 𝑘𝐵𝑇 ∆𝑆 𝑞𝑢𝑒𝑛𝑐ℎ + 𝜑(𝑛𝑞) 



𝑛𝑔,𝑏 > 𝑛𝑔,𝑎 > 1/2 

∆𝑆 𝑞𝑢𝑒𝑛𝑐ℎ = 𝑆 𝑛𝑔,𝑏 − 𝑆 𝑛𝑔,𝑎  

 

𝑆: Shannon entropy for a TLS: 

 

𝑆 𝑛𝑔 = − 1 − 𝑝0(𝑛𝑔) ln 1 − 𝑝0(𝑛𝑔) − 𝑝0(𝑛𝑔) ln 𝑝0(𝑛𝑔) 

𝑊 = 𝑘𝐵𝑇 ∆𝑆 𝑞𝑢𝑒𝑛𝑐ℎ + 𝜑(𝑛𝑞) 



𝑊 = 𝑘𝐵𝑇 ∆𝑆 𝑞𝑢𝑒𝑛𝑐ℎ

<0!

+ 𝜑(𝑛𝑞) 

 1st term: Shannon entropy decreases away from degeneracy 

 

 𝑊 < 0 if ground state before quench:  

probability of work extraction = ground state probability at the quench 

onset = favorable! 

 

𝑛𝑔,𝑏 > 𝑛𝑔,𝑎 > 1/2 

𝜑(𝑛𝑞): state-dependent offset 



 65 % of successful events (𝑊 < ∆𝐹) 

 

 

 

O. Maillet et al., Phys. Rev. Lett. 122, 150604 (2019) 



 65 % of successful events (𝑊 < ∆𝐹) 

 

 

 

 

 

 Efficiency limited by irreversible driving 

 

 No theoretical bound to 99,999… % 

probable work extraction: optimization 

required (RF SET, longer ramps…) 

 

 Statistics matters!  

O. Maillet et al., Phys. Rev. Lett. 122, 150604 (2019) 



Summary 

∆𝐸 𝑛𝑔 = 𝐸𝐶(1 − 2𝑛𝑔) 

𝑊 

 Hybrid normal-superconducting single-

electron box with simple energetics as a 

model system for stochastic 

thermodynamics 



Summary 

∆𝐸 𝑛𝑔 = 𝐸𝐶(1 − 2𝑛𝑔) 

𝑊 

 Hybrid normal-superconducting single-

electron box with simple energetics as a 

model system for stochastic 

thermodynamics 

 

 

 

 

 

 Optimal protocol to obtain work 

fluctuations far beyond the 2nd law 

prescription 

 

O. Maillet et al., Phys. Rev. Lett. 

122, 150604 (2019) 



Summary 

∆𝐸 𝑛𝑔 = 𝐸𝐶(1 − 2𝑛𝑔) 

𝑊 

 Hybrid normal-superconducting single-

electron box with simple energetics as a 

model system for stochastic 

thermodynamics 

 

 

 

 

 

 Optimal protocol to obtain work 

fluctuations far beyond the 2nd law 

prescription 

 

 Can be tuned to make fluctuations 

beyond the 2nd law prescription 

arbitrarily probable 

O. Maillet et al., Phys. Rev. Lett. 

122, 150604 (2019) 



Thank you ! 



Experiments with mesoscopics 

G. M. Wang et al., 

Phys. Rev. Lett. 

(2002) 

 Colloidal particle in an harmonic trap 

 

 Experimental demonstration of second law « violations » at short timescales 

(black data) 



Experiments with mesoscopics 

B. Küng et al., Phys. 

Rev. X (2012) 

 Double (quantum) dot = direction of electron tunneling = entropy 

measurements 

 

S. Singh et al., ArXiv 

(2017) 



Experiments with mesoscopics 

O.-P. Saira et al., 

Phys. Rev. Lett. (2012) 

 Test of Jarzynski equality with a single 

electron box 

 

 Gate driving cycle, measurement of heat 

exchange (tunneling events) during the cycle 

 



Experiments with mesoscopics 

J. V. Koski et al., PNAS (2014) 

 Szilard engine: feedback on system driving applied using the information gained by 

a detector (= Maxwell Demon operation) 

 

 Work extracted from the system on average, close to Landauer limit (-kTlog2) 

 

 Not a true violation of 2nd law: entropy created in the Demon («cost of information») 

J. V. Koski et al., Phys. Rev. Lett. (2015) 



∆𝐸 𝑛𝑔 = 𝐸𝐶(1 − 2𝑛𝑔) 

 Typical tunneling rates 

~ 100-300 Hz 

 

 Waiting time distribution 

for a Poisson process 

Γ− 

Γ+ 

𝑛𝑔 = 0.5 𝑛𝑔 = 0.65 

Single electron box 



∆𝐸 𝑛𝑔 = 𝐸𝐶(1 − 2𝑛𝑔) 

 Rate equations: 

 

 
𝜕𝑡𝑝0 = −Γ+𝑝0 + Γ−𝑝1
𝜕𝑡𝑝1 = −Γ−𝑝1 + Γ+𝑝0

 

 

 

 Detailed balance at equilibrium: 

 
𝑝0
𝑝1

=
Γ−

Γ+
= 𝑒Δ𝐸(𝑛𝑔)/𝑘𝐵𝑇 

 

Single electron box 



∆𝐹 

𝑊 

Probabilistic work extraction 

Work applied 𝑊[𝑛 𝑡 , 𝑛𝑔(𝑡)] =  𝑑𝑡𝑛 𝑔(𝑡)
𝜕𝐻

𝜕𝑛𝑔

𝑇

0
 



∆𝐹 

𝑊− 
𝑊 

Success 

Requirements for the driving protocol over a cycle: 

 

 Bound on minimum work extracted 𝑊− − ∆𝐹 if successful attempt 

 

Probabilistic work extraction 

Work applied 𝑊[𝑛 𝑡 , 𝑛𝑔(𝑡)] =  𝑑𝑡𝑛 𝑔(𝑡)
𝜕𝐻

𝜕𝑛𝑔

𝑇

0
 



∆𝐹 

𝑊− 𝑊+ 
𝑊 

Success Failure 

Requirements for the driving protocol over a cycle: 

 

 Bound on minimum work extracted 𝑊− − ∆𝐹 if successful attempt 

 

 Bound on maximum work paid 𝑊+ − ∆𝐹 if failed attempt 

 

 

Probabilistic work extraction 

Work applied 𝑊[𝑛 𝑡 , 𝑛𝑔(𝑡)] =  𝑑𝑡𝑛 𝑔(𝑡)
𝜕𝐻

𝜕𝑛𝑔

𝑇

0
 



∆𝐹 

𝑊− 𝑊+ 
𝑊 

Success Failure 

Requirements for the driving protocol over a cycle: 

 

 Bound on minimum work extracted 𝑊− − ∆𝐹 if successful attempt 

 

 Bound on maximum work paid 𝑊+ − ∆𝐹 if failed attempt 

 

 

Probabilistic work extraction 

Work applied 𝑊[𝑛 𝑡 , 𝑛𝑔(𝑡)] =  𝑑𝑡𝑛 𝑔(𝑡)
𝜕𝐻

𝜕𝑛𝑔

𝑇

0
 



∆𝐹 

𝑊− 𝑊+ 
𝑊 

Success Failure 
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 Average work performed on system 

positive: in agreement with 

second law (∆𝐹 = 0 for our closed cycle) 

 

 Increases with quench amplitude: more 

irreversibility introduced 

 Probability of violation decreases with 

quench amplitude Δ𝑛𝑔 = 𝑛𝑔
∗ − 1/2 

 

 Weights: Gibbs functions 𝑝0, 1 − 𝑝0 for 

favorable/unfavorable state just before 

the quench 

 



 Heat dissipated by imperfect quasi-static 

driving: broadening 

 

 Additional irreversibility scales with the 

ramp slope 



 Heat dissipated by imperfect quasi-static 

driving: broadening 

 

 Additional irreversibility scales with the 

ramp slope 

 

 

 

 

 

 Master equation approach: time evolution 

of work probability distribution 𝜌(𝑊, 𝑡) 
 

 Good agreement with data, no free 

parameter 
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« discrete » steps describing a transformation: 

 Quench: fast = no heat 

exchanged, only work 

 

 Thermalization: no work 

done, heat removed 

from/released to the bath 
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« discrete » steps describing a transformation: 

 Quench: fast = no heat 

exchanged, only work 

 

 Thermalization: no work 

done, heat removed 

from/released to the bath 

 

 Large quench = splits in two 

the work distribution 

 

 

 

 𝑝0 =
1

𝑒−(𝐸𝑏−𝐸𝑎)/𝑘𝐵𝑇+1
 (Gibbs) 

 

𝑝 𝑊 = 𝑝0𝛿 𝑊 −𝑊+ + (𝟏 − 𝒑𝟎)𝜹(𝑾 −𝑾−) 
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A neat limit 



∆𝐹 

𝑊− → ∆𝐹 𝑊+ → ∞ 
𝑊 

Success Failure 

If we loosen requirements: 𝑊− → ∆𝐹, 𝑊+ → ∞ 

  

 Maximum probability 𝑝∞ 𝑊 ≤ 𝑊−  allowed by Jarzynski’s equality 

 

𝑝∞ 𝑊 ≤ 𝑊− ≤ 𝑒−(𝑊
−−∆𝐹)/𝑘𝐵𝑇

𝑊−→∆𝐹
1 

 

 

A neat limit 



 𝑊 𝑛𝑞 = 𝑘𝐵𝑇 ∆𝑆 𝑞𝑢𝑒𝑛𝑐ℎ

<0!

+ Σ(𝑛𝑞) 

𝑛𝑔,𝑏 > 𝑛𝑔,𝑎 > 1/2 

 Σ 𝑛𝑞 > 0 if 𝑛𝑔,𝑏 > 𝑛𝑔,𝑎 > 1/2 

 

 Σ 𝑛𝑞 = 1 < −𝑘𝐵𝑇 ∆𝑆 𝑞𝑢𝑒𝑛𝑐ℎ 
𝑛𝑞 = 0 1 
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𝑛𝑞 = 0 1 

𝑊 < 0 
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