

Maximizing local violations of the second law with a singleelectron transistor

Or: "How much work can we extract from thermal fluctuations at the single thermodynamic trajectory level ?"

O. Maillet, P. A. Erdman, V. Cavina, B. Bhandari, E. Mannila, J. Peltonen, A. Mari, F. Taddei, C. Jarzynski, V. Giovannetti, J. P. Pekola

Context

> Jarzynski equality:

$$\left\langle e^{-W/k_BT}\right\rangle = e^{-\Delta F/k_BT}$$

C. Jarzynski, Phys. Rev. Lett. **78,** 2690 (1997)

Context

> Jarzynski equality for a single heat bath :

$$\langle e^{-W/k_BT} \rangle = e^{-\Delta F/k_BT}$$

C. Jarzynski, Phys. Rev. Lett. **78**, 2690 (1997)

 \rightarrow Work can be extracted beyond ΔF at the single trajectory level

Experiments with mesoscopics

- Test of Jarzynski equality with a single electron box
- Gate driving cycle, measurement of heat exchange (tunneling events) during the cycle

O.-P. Saira *et al.*, Phys. Rev. Lett. **109**, 180601 (2012)

Jarzynski equality for a single heat bath :

$$\langle e^{-W/k_BT} \rangle = e^{-\Delta F/k_BT}$$

C. Jarzynski, Phys. Rev. Lett. **78**, 2690 (1997)

→ Work can be extracted beyond ΔF at the single trajectory level → How to optimize (= maximize, make likely...) single-shot work extraction ?

> N. Y. Halpern et al., New. J. Phys. **17** 095003 (2015) V. Cavina et al., Sci. Rep. **6**, 29282 (2016)

Normal-Insulator-Superconductor tunnel junction

Fabrication: EBL+ angle evaporation + low pressure oxidation of Aluminum

NIS tunnel junction

- Fabrication: EBL+ angle evaporation + low pressure oxidation of Aluminum
- > Thermally activated tunneling rate:

$$\Gamma_{S \to N}(\mu_N) = \frac{1}{e^2 R_T} \int dE [1 - f(E - \mu_N, T_N)] f(E, T_S) n_S(E)$$

NIS tunnel junction

- Fabrication: EBL+ angle evaporation + low pressure oxidation of Aluminum
- > Thermally activated tunneling rate:

$$\Gamma_{S \to N}(\mu_N) = \frac{1}{e^2 R_T} \int dE [1 - f(E - \mu_N, T_N)] f(E, T_S) n_S(E)$$

Coulomb blockade

- Small metallic island, with small capacitance C_{Σ} dominated by tunnel junctions
- ► Ultrasmall junctions (area < 100 nm x 100 nm): $C_{\Sigma} \le 1$ fF
- > Energy cost of tunneling: charging energy $E_c = \frac{e^2}{2C_{\Sigma}}$
- ➤ Two junctions: SINIS transistor for transport measurements → E_c , R_T can be measured

- > Hamiltonian for equivalent circuit: $H(n, n_g) = E_C (n n_g)^2$
- > Tunable electrostatic energy with gate voltage $n_g = \frac{C_g V_g}{e}$

➢ $E_c \sim 1$ K: occupation of two charge states $N_0 + n, n = 0,1$ for $n_g \in [0; 1]$

Normal-Insulator-Superconductor tunnel junctions + Coulomb blockade

$$H(n, n_g) = E_C (n - n_g)^2$$

Normal-Insulator-Superconductor tunnel junctions + Coulomb blockade

$$H(n, n_g) = E_C (n - n_g)^2$$

 Electron tunneling = heat exchange

$$\Delta E(n_g) = E_C(1 - 2n_g)$$

Normal-Insulator-Superconductor tunnel junctions + Coulomb blockade

$$H(n, n_g) = E_C (n - n_g)^2$$

Electron tunneling = heat exchange (stochastic)

$$\Delta E(n_g) = E_C(1-2n_g)$$

➤ Gate driving n_g(t) = work applied $W[n(t), n_g(t)] = \int dt \dot{n}_g(t) \frac{\partial H}{\partial n_g}$

n=1

Rate equations:

$$\begin{cases} \partial_t p_0 = -\Gamma^+ p_0 + \Gamma^- p_1 \\ \partial_t p_1 = -\Gamma^- p_1 + \Gamma^+ p_0 \end{cases}$$

Detailed balance at equilibrium:

$$\frac{p_0}{p_1} = \frac{\Gamma^-}{\Gamma^+} = e^{\Delta E(n_g)/k_B T}$$

Tunneling time (s)

Tunneling time (s)

Jarzynski equality for a single heat bath:

$$\langle e^{-W/k_BT} \rangle = e^{-\Delta F/k_BT}$$

C. Jarzynski, Phys. Rev. Lett. **78**, 2690 (1997)

→ Work can be extracted beyond ΔF at the single trajectory level → How to optimize (= maximize, make likely...) single-shot work extraction ?

> N. Y. Halpern et al., New. J. Phys. **17** 095003 (2015) V. Cavina et al., Sci. Rep. **6**, 29282 (2016)

Requirements for the driving protocol over a cycle:

> Bound on minimum work extracted $W^- - \Delta F$ if successful attempt

Work applied
$$W[n(t), n_g(t)] = \int_0^T dt \dot{n}_g(t) \frac{\partial H}{\partial n_g}$$

Requirements for the driving protocol over a cycle:

- > Bound on minimum work extracted $W^- \Delta F$ if successful attempt
- > Bound on maximum work paid $W^+ \Delta F$ if failed attempt

Work applied
$$W[n(t), n_g(t)] = \int_0^T dt \dot{n}_g(t) \frac{\partial H}{\partial n_g}$$

Requirements for the driving protocol over a cycle:

- > Bound on minimum work extracted $W^- \Delta F$ if successful attempt
- > Bound on maximum work paid $W^+ \Delta F$ if failed attempt
- ➤ Maximum probability $p_{W^+}(W \le W^-)$ allowed by Jarzynski's equality

$$p_{W^+}(W \le W^-) \le \frac{e^{\Delta F/k_B T} - e^{-W^+/k_B T}}{e^{-W^-/k_B T} - e^{-W^+/k_B T}} \quad \begin{array}{l} \text{V. Cavina et al., Sci. Rep. 6,} \\ 29282 \ (2016) \end{array}$$

V. Cavina et al., Sci. Rep. **6**, 29282 (2016): sequence of « discrete » steps describing a transformation:

- Quench: fast = no heat exchanged, only work
- Thermalization: no work done, heat removed from/released to the bath

V. Cavina et al., Sci. Rep. **6**, 29282 (2016): sequence of « discrete » steps describing a transformation:

- Quench: fast = no heat exchanged, only work
- Thermalization: no work done, heat removed from/released to the bath
- Large quench = splits in two the work distribution

$$p(W) = p_0 \delta(W - W^+) + (\mathbf{1} - \mathbf{p_0}) \delta(W - W^-)$$

- \succ Two « reversible » ramps, time interval \gg characteristic tunneling time
- Quench time « characteristic tunneling time: no heat exchange

 \succ Two « reversible » ramps, time interval \gg characteristic tunneling time

Quench time « characteristic tunneling time: no heat exchange

► Driving cycle:
$$W = -Q = -\sum_i \Delta E[n_g(t_i)]\Delta n(t_i)$$

→ work over one trajectory can be inferred

 \succ ca. 1000 repetitions = distribution of work fluctuations

 $W^{\pm} = \mp \Delta E \left(n_g^* \right)$

$$W^{\pm} = \mp \Delta E(n_g^*)$$

> Depends only on state n_q at quench onset:

$$W^{\pm} = \mp \Delta E(n_g^*)$$

> Depends only on state n_q at quench onset: win if excited state

$$W^{\pm} = \mp \Delta E(n_g^*)$$

> Depends only on state n_q at quench onset:

$$W^{\pm} = \mp \Delta E(n_g^*)$$

> Depends only on state n_q at quench onset: lose if ground state

 $n_q = 0$ 1 \bigvee \bigvee \bigvee \bigvee W > 0

- \succ Δ $n_g = n_g^* 1/2 = 0.11$ → small quench amplitude
- Finite peak width: imperfect quasistatic ramp

O. Maillet *et al.*, Phys. Rev. Lett. **122**, 150604 (2019)

$$\Delta n_g = n_g^* - 1/2 = 0.11 → \text{small quench}$$
amplitude

Finite peak width: imperfect quasistatic ramp

$$\succ$$
 Δ $n_g = 0.17$ → large quench amplitude

- > Probability of violation decreases with quench amplitude $\Delta n_g = n_g^* 1/2$
- Weights: Gibbs functions for favorable/unfavorable state just before the quench

{0.15} d 1.1 1.05 -Wk B $\langle W \rangle / E{C}$ 0.95 0.1 0.05 0.1 0.15 0.2 Δn_a 0.05 0 0.05 0.1 0.15 0.2 0 Δn_g

- ➢ Probability of violation decreases with quench amplitude $\Delta n_g = n_g^* 1/2$
- Weights: Gibbs functions for favorable/unfavorable state just before the quench

- > Average work performed on system positive: in agreement with second law ($\Delta F = 0$ for our closed cycle)
- Increases with quench amplitude: more irreversibility introduced

O. Maillet et al., Phys. Rev. Lett. 122, 150604 (2019)

 $W^{\pm} = \mp \Delta E(n_g^*)$

Depends only on state at quench onset: win if excited state = less likely

> The larger, the less probable

 $W^{\pm} = \mp \Delta E(n_g^*)$

Depends only on state at quench onset: win if excited state = less likely

The larger, the less probable = how to make extraction more probable ?

Requirements:

- > Bound on minimum work extracted $W^- \Delta F$ if successful attempt
- > Bound on maximum work paid $W^+ \Delta F$ if failed attempt
- ➤ Maximum probability $p_{W^+}(W \le W^-)$ allowed by Jarzynski's equality

$$p_{W^+}(W \le W^-) \le \frac{e^{\Delta F/k_B T} - e^{-W^+/k_B T}}{e^{-W^-/k_B T} - e^{-W^+/k_B T}}$$

V. Cavina et al., Sci. Rep. (2016)

If we loosen requirements: $W^- \to \Delta F$, $W^+ \to \infty$

> Maximum probability $p_{\infty}(W \leq W^{-})$ allowed by Jarzynski's equality

$$p_{\infty}(W \le W^{-}) \le e^{-(W^{-} - \Delta F)/k_{B}T} \xrightarrow[W^{-} \to \Delta F]{1}$$

$$W = k_B T(\Delta S)_{quench} + \varphi(n_q)$$

$$W = k_B T(\Delta S)_{quench} + \varphi(n_q)$$

 $(\Delta S)_{quench} = S(n_{g,b}) - S(n_{g,a})$

 $W = k_B T(\Delta S)_{quench} + \varphi(n_q)$

 $(\Delta S)_{quench} = S(n_{g,b}) - S(n_{g,a})$

S: Shannon entropy for a TLS:

$$S(n_g) = -(1 - p_0(n_g)) \ln(1 - p_0(n_g)) - p_0(n_g) \ln p_0(n_g)$$

- Ist term: Shannon entropy decreases away from degeneracy
- W < 0 if ground state before quench: probability of work extraction = ground state probability at the quench onset = favorable!

O. Maillet et al., Phys. Rev. Lett. 122, 150604 (2019)

> 65 % of successful events ($W < \Delta F$)

O. Maillet et al., Phys. Rev. Lett. 122, 150604 (2019)

▶ 65 % of successful events ($W < \Delta F$)

- Efficiency limited by irreversible driving
- No theoretical bound to 99,999... % probable work extraction: optimization required (RF SET, longer ramps...)
- > Statistics matters!

Summary

Hybrid normal-superconducting singleelectron box with simple energetics as a model system for stochastic thermodynamics

Summary

С

⊆⁰⁷ 0.5

Hybrid normal-superconducting singleelectron box with simple energetics as a model system for stochastic thermodynamics

- O. Maillet et al., Phys. Rev. Lett. **122**, 150604 (2019)
- Optimal protocol to obtain work fluctuations far beyond the 2nd law prescription

Summary

С

0.75

د^ص 0.5

Hybrid normal-superconducting singleelectron box with simple energetics as a model system for stochastic thermodynamics

- O. Maillet et al., Phys. Rev. Lett. **122**, 150604 (2019)
- Optimal protocol to obtain work fluctuations far beyond the 2nd law prescription
- Can be tuned to make fluctuations beyond the 2nd law prescription arbitrarily probable

Thank you !

- Colloidal particle in an harmonic trap
- Experimental demonstration of second law « violations » at short timescales (black data)

Double (quantum) dot = direction of electron tunneling = entropy measurements

B. Küng *et al.*, Phys. Rev. X (2012)

S. Singh *et al.*, ArXiv (2017)

SET

- Test of Jarzynski equality with a single electron box
- Gate driving cycle, measurement of heat exchange (tunneling events) during the cycle

O.-P. Saira *et al.*, Phys. Rev. Lett. (2012)

- Szilard engine: feedback on system driving applied using the information gained by a detector (= Maxwell Demon operation)
- Work extracted from the system on average, close to Landauer limit (-kTlog2)
- > Not a true violation of 2nd law: entropy created in the Demon («cost of information»)

J. V. Koski *et al.*, PNAS (2014) J. V. Koski *et al.*, Phys. Rev. Lett. (2015)

Single electron box

Tunneling time (s)

Tunneling time (s)

Single electron box

Rate equations:

$$\begin{cases} \partial_t p_0 = -\Gamma^+ p_0 + \Gamma^- p_1 \\ \partial_t p_1 = -\Gamma^- p_1 + \Gamma^+ p_0 \end{cases}$$

Detailed balance at equilibrium:

$$\frac{p_0}{p_1} = \frac{\Gamma^-}{\Gamma^+} = e^{\Delta E(n_g)/k_B T}$$

Requirements for the driving protocol over a cycle:

> Bound on minimum work extracted $W^- - \Delta F$ if successful attempt

Work applied
$$W[n(t), n_g(t)] = \int_0^T dt \dot{n}_g(t) \frac{\partial H}{\partial n_g}$$

Requirements for the driving protocol over a cycle:

- > Bound on minimum work extracted $W^- \Delta F$ if successful attempt
- > Bound on maximum work paid $W^+ \Delta F$ if failed attempt

Work applied
$$W[n(t), n_g(t)] = \int_0^T dt \dot{n}_g(t) \frac{\partial H}{\partial n_g}$$

Requirements for the driving protocol over a cycle:

- > Bound on minimum work extracted $W^- \Delta F$ if successful attempt
- > Bound on maximum work paid $W^+ \Delta F$ if failed attempt

Work applied
$$W[n(t), n_g(t)] = \int_0^T dt \dot{n}_g(t) \frac{\partial H}{\partial n_g}$$

Requirements for the driving protocol over a cycle:

- > Bound on minimum work extracted $W^- \Delta F$ if successful attempt
- > Bound on maximum work paid $W^+ \Delta F$ if failed attempt
- ➤ Maximum probability $p_{W^+}(W \le W^-)$ allowed by Jarzynski's equality

$$p_{W^+}(W \le W^-) \le \frac{e^{\Delta F/k_B T} - e^{-W^+/k_B T}}{e^{-W^-/k_B T} - e^{-W^+/k_B T}}$$
 V. Cavina et al., Sci. Rep. (2016)

 $p_{W^+}(W \le W^-) \le \frac{e^{\Delta F/k_B T} - e^{-W^+/k_B T}}{e^{-W^-/k_B T} - e^{-W^+/k_B T}}$ V. Cavina et al., Sci. Rep. (2016)

- > Probability of violation decreases with quench amplitude $\Delta n_g = n_g^* 1/2$
- ➤ Weights: Gibbs functions p₀, 1 p₀ for favorable/unfavorable state just before the quench

- > Average work performed on system positive: in agreement with second law ($\Delta F = 0$ for our closed cycle)
- Increases with quench amplitude: more irreversibility introduced

- Heat dissipated by imperfect quasi-static driving: broadening
- Additional irreversibility scales with the ramp slope

- Heat dissipated by imperfect quasi-static driving: broadening
- Additional irreversibility scales with the ramp slope

- > Master equation approach: time evolution of work probability distribution $\rho(W, t)$
- Good agreement with data, no free parameter

V. Cavina et al., Sci. Rep. (2016): sequence of « discrete » steps describing a transformation:

- Quench: fast = no heat exchanged, only work
- Thermalization: no work done, heat removed from/released to the bath

V. Cavina et al., Sci. Rep. (2016): sequence of « discrete » steps describing a transformation:

- Quench: fast = no heat exchanged, only work
- Thermalization: no work done, heat removed from/released to the bath
- Large quench = splits in two the work distribution

$$p(W) = p_0 \delta(W - W^+) + (\mathbf{1} - \mathbf{p_0}) \delta(W - W^-)$$

 $\begin{array}{c|c} & & (\omega_{H_a}, E_b | 1 \rangle \langle 1 |) \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

E

Requirements:

- > Bound on minimum work extracted $W^- \Delta F$ if successful attempt
- > Bound on maximum work paid $W^+ \Delta F$ if failed attempt
- ➤ Maximum probability $p_{W^+}(W \le W^-)$ allowed by Jarzynski's equality

$$p_{W^+}(W \le W^-) \le \frac{e^{\Delta F/k_B T} - e^{-W^+/k_B T}}{e^{-W^-/k_B T} - e^{-W^+/k_B T}}$$

V. Cavina et al., Sci. Rep. (2016)

If we loosen requirements: $W^- \to \Delta F$, $W^+ \to \infty$

> Maximum probability $p_{\infty}(W \leq W^{-})$ allowed by Jarzynski's equality

$$p_{\infty}(W \le W^{-}) \le e^{-(W^{-} - \Delta F)/k_{B}T} \xrightarrow[W^{-} \to \Delta F]{1}$$

$$W(n_q) = \underbrace{k_B T(\Delta S)_{quench}}_{<0!} + \Sigma(n_q)$$

 \succ Σ(n_q) > 0 if $n_{g,b} > n_{g,a} > 1/2$

 $\succ \Sigma(n_q = 1) < -k_B T(\Delta S)_{quench}$

$$W(n_q) = \underbrace{k_B T(\Delta S)_{quench}}_{<0!} + \Sigma(n_q)$$

$$∑(n_q) > 0 \text{ if } n_{g,b} > n_{g,a} > 1/2$$

$$\succ \Sigma(n_q = 1) < -k_B T(\Delta S)_{quench} \rightarrow W(n_q = 1) < 0$$

$$\succ \Sigma(n_q = 0) > -k_B T(\Delta S)_{quench}$$

/

 $n_q = 0$ 1

