

AT THE FOREFRONT OF NANOSCIENCE

Optimal power and efficiency of a quantumdot heat engine

MARTIN JOSEFSSON, A. SVILANS, A. BURKE, E. HOFFMAN, S. FAHLVIK, C. THELANDER, M. LEIJNSE, H. LINKE

QTD Espoo, June 25th, 2019

Outline

- QD heat engine + motivation
- Theory & Experimental setup
- Power
- Efficiency

Further reading

<u>M. Josefsson</u> et al. Nature Nanotechnology **13**, 920 (2018) <u>M. Josefsson</u> et al. arXiv:1903.12618

QD Heat Engine

Electronic efficiency limits (QD):

Overall maximum

$$\eta_C = 1 - \frac{T_C}{T_H}$$

PNAS **93**, 7436 (1996), PRL **89**, 116801 (2002) PRL **94**, 096601(2005) At maximum power

$$\eta_{CA} = 1 - \sqrt{\frac{T_C}{T_H}} \approx \frac{\eta_C}{2}$$

EPL **85**, 60010 (2009) PRB **78**, 161406 (2008)

Experiments

The QD

InP-segment in a InAs nanowire

Band-gap offset confines electrons

Circuitry Metallic contactor "Top-heaters" used for thermal biasing $\Delta T = T_H$ and/or Vext generates a current Externed Stress of the sector thermal biasing of the sector thermal biasing of the sector th

Anderson model

• Small Γ , large e-e interactions

Real-time diagrammatics

- Master equations
- Keep terms up to Γ^2
 - Charge current
 - Heat current (no phonons)

$$H = H_D + \sum_r H_r + \sum_r T_{T,r}$$

Leijnse, Wegewijs, PRB **78**, 235424 (2008) N. Gergs et al. PRL **120**, 017701 (2018)

Conductance and power

_

Device characterization

Conductance ($\Delta T = 0$):

 E_{C} and α from stability diagram

 Γ from G(V_G) (fit)

Thermocurrent ($\Delta T > 0$):

 T_H and T_C from $I(V_G)$ (fit)

Repeated for each $I(V_G)$

Nat. Nano. 13, 920 (2018)

Power & Load Matching 1

Remove V_{ext} - attach load.

Only power generation P>0

Optimal load (theory)

Linear response and sequential tunneling

$$R_P \approx 2.507 \frac{k_B (T_H + T_C)}{2\hbar\Gamma} \frac{h}{e^2}$$

Non-linear and second order effects: ~ 1%

Nat. Nano. 13, 920 (2018) & arXiv:1903.12618

1

0

10³

10⁴

10⁵

10⁶

R [Ω]

10⁷

10⁹

10⁸

Power 2

Use V_{ext} to simulate a load:

QD

Ά

V_{ext} ⊪__⊦+

Two modes of operation:

P > 0 generator

P < 0 refrigerator

 $P = -IV_{ext}$

NANOLUND LUNIVERSITY AT THE FOREFRONT OF NANOSCIENCE

Load Matching 2

Find optimal load from *P* vs *I*/V_{ext}

-

Efficiency

_

_

Nat. Nano. 13, 920 (2018)

Our device

Efficiency

Focus on VG optimized for P

Curzon-Ahlborn efficiency η_{CA} at maximum *P*

 $\eta \sim 0.7 \eta_C$ at P=50% of max P

First high efficiency estimates in a real device!

Efficiency - second order

General anderson QDs

Second order effects - broadening

Max η for our device 70-80% of η_{C}

 η at max P less sensitive

Second order effects important!

- Theory and experiments on a single QD heat engine
- Load matching several options
- $\eta = \eta_{CA}$ when R is optimized for high power
- $\eta \sim 0.7 \eta_C$ when R is optimized for high power
- Second order tunneling important for $\boldsymbol{\eta}$

3

P_{max} [fW]

NANOLUND

AT THE FOREFRONT OF NANOSCIENCE