
Design of heat pumps with parametrically driven linear
electrical circuits

Nahuel Freitas, Jean-Charles Delvenne, Massimiliano Esposito

University of Luxembourg

June 2019

arXiv:1906.11233

Nahuel Freitas Design of heat pumps with parametrically driven linear electrical circuitsJune 2019 1 / 25



Outline

Motivation and context. Building a general thermodynamic theory of electrical circuits.

Quick review of the graph-theoretical description of electrical networks.

Classical high temperature regime: when is a description of a circuit thermodynamically
consistent?

Minimal example of application: cooling a resistor

Quantum regime: avoiding full canonical quantization.

A fully general computational tool: Time dependent Landauer-Büttiker formula

Quantum limits to cooling protrocols: a strong coupling effect

Summary and next steps.
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Motivation and context

Electronic circuits are a versatile framework to experimentally explore classical and
quantum non-equillibrium thermodynamics.

Karimi, B., et al., PRB 94.18 (2016): 184503

Ciliberto, S., et al. PRL 110.18 (2013):180601

On the other hand, the main limitation in current technologies for information processing
is given by the power consumption and by the generation of heat.

Can the new developments in stochastic and quantum thermodynamics assist in the
search for new strategies to reduce heat production within electronic circuits, or to
improve its management?

We want to build a general thermodynamic theory of electronic circuits.
First step: linear circuits.
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Graph theoretical description of electrical circuits
Normal tree

I T1,R1

C1

C2

− +

V

R2,T2

R3,T3 R4,T4

L

R3 R4

V C2

L

R2

I R1

C1

Dynamical variables:

Charges in the capacitors (q)

Magnetic fluxes in the inductors (φ).

They are independent variables if there are not:

Loops of only capacitors and voltage
sources Cutsets of only inductors and current

sources

Normal tree:

Under these conditions it is always possible to find a spanning

tree in which all the capacitors and voltage sources are part of

it, and all inductors and currents sources are out of it. Such a

tree is a normal tree.
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Graph theoretical description of electrical circuits
Loops and cut-sets matrices

R3 R4

V C2

L

R2

I R1

C1

Matrix of fundmental loops:
Adding edges to the tree one by one we can form loops...

V C1 C2 R1 R2 R4

R3 −1 0 1 0 0 −1
L 0 1 0 1 0 −1
I 1 1 −1 1 1 0

Matrix of fundamental cutsets:
Removing edges from the tree one by one we can define cutsets...

R3 L I
V 1 0 −1
C1 0 −1 −1
C2 −1 0 1
R1 0 −1 −1
R2 0 0 −1
R4 1 1 0
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Graph theoretical description of electrical circuits
Loops and cut-sets matrices
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Nahuel Freitas Design of heat pumps with parametrically driven linear electrical circuitsJune 2019 5 / 25



Graph theoretical description of electrical circuits
Cut-sets matrix and state equation

Thus, given a normal tree we can construct a set of fundamental cut-sets:

Qlink =

 QER QEL QEI

QCR QCL QCI

QRR QRL QRI


and from its blocks we can describe the dynamics of the circuit state:

x=

[
q
φ

]
s=

[
vE
jI

]
dx

dt
= A(t)H(t) x+ B(t)s(t) H=

[
C−1

L−1

]

A(t) =Mc −MT
d αMd

B(t) =Ms −MT
d αMsd

Mc =

[
−QCL

QTCL

]

Md =

[
QTCR

−QRL

] α=

[
Rl −QTRR
QRR R−1

t

]−1
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Stochastic dynamics
High temperature Johnson-Nyquist noise:

〈∆v(t)〉 = 0

〈∆v(t)∆v(t′)〉 = 2RkbT δ(t− t′)

Langevin state equation

dx

dt
= A(t)H(t) x+ B(t)s(t) +

∑
r

√
2kbTr Cr ξ(t)

Cr =MT
d αR

1/2Πr 〈ξi(t)ξj(t′)〉 = δi,jδ(t− t′)

Fluctuation dissipation relation:

(A)s =
A+AT

2
= −

∑
r

CrCTr

Nahuel Freitas Design of heat pumps with parametrically driven linear electrical circuitsJune 2019 7 / 25



Stochastic dynamics
Evolution of the mean values and covariance matrix

Mean values evolve with the deterministic equation of motion:

d〈x〉
dt

= AH(t) 〈x〉+ B(t)s(t)

And the covariance matrix σ = 〈xxT 〉 − 〈x〉〈x〉T evolves acording to:

d

dt
σ(t) = AH(t)σ(t) + σ(t)H(t)AT +

∑
r

2kbTr CrCTr

For time independent systems the stationary state covariance matrix can be obtained by solving
a Lyapunov equation:

0 = AHσst + σstHAT +
∑
r

2kbTr CrCTr
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Stochastic thermodynamics
Definition of local heat currents

Circuit energy and its variation:

E =
1

2
xTH(t)x =⇒ 〈E〉 =

1

2
Tr
[
H(t)〈x〉〈x〉T

]
+

1

2
Tr [Hσ]

d〈E〉
dt

=
1

2
Tr

[
H(t)

d

dt

(
〈x〉〈x〉T + σ

)]
︸ ︷︷ ︸

Heat

+
1

2
Tr

[
d

dt
H(t)

(
〈x〉〈x〉T + σ

)]
︸ ︷︷ ︸

Work

Employing the evolution equation for σ and the FD relation, we obtain:

〈Q̇〉 =
∑
r

(
〈jr〉〈vr〉+ Tr[(HσH− kbTrH)CrCTr ]

)
,

From this it is natural to define the local heat currents as:

〈Q̇r〉 = 〈jr〉〈vr〉+ Tr[(HσH− kbTrH)CrCTr ].

However, THIS IS NOT ALWAYS CORRECT!
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Stochastic thermodynamics
Definition of local heat currents

Local heat currents can be naturally defined as:

Q̇r = jr(vr + ∆vr)

However, 〈Q̇r〉 is divergent in general. Why?

Some examples:

C

R1 R2

(a)

L C

R1 R2

(b)

C

R1 R2 C′

(c)

In (a), fluctuations of arbitrarily high frequency
in R2 can be dissipated into R1.
In (b) and (c) these fluctuations are filtered out.

Comments:

This is an artifact of the white noise idealization.

However, it indicates whether relevant degrees of
freedom are not explicitly described.

We can solve it by taking S(ω) = (RkbT/π)J(ω),
with J(ω) vanishing for large frequencies.

Or, equivalently, by ‘dressing’ a white noise resistor
(analogous to Markovian embedding techniques).

General topological condition:
All heat currents are well defined if there are no
fundamental cut-sets simultaneously involving resistors
inside and outside the normal tree.

QRR = 0
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Application: cooling a resistor
A simple circuit-based machine

C1

L

C2R1 R2

C1

R1

C2

R2

L

The matrices describing this circuit are:

Qlink =

[
1 0 −1

︸ ︷︷ ︸
QCR

0 1 ︸︷︷︸
QCL

−1

]
=⇒ Mc =

 0 0 1
0 0 1
−1 −1 0

 Md =

[
−1 0 0
0 −1 0

]

And the state equation is:

dx

dt
= A(t)H(t) x+

√
2kbT1 C1 ξ(t) +

√
2kbT2 C2 ξ(t)

A(t) =Mc −MT
d αMd =

 −R−1
1 0 1

0 −R−1
2 1

−1 −1 0


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√
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√
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Application: cooling a resistor
A simple circuit-based machine

C1

L

C2R1 R2

C1

R1

C2

R2

L

1 - Stationary heat conduction: (C1 = C2 = C, R1 = R2 = R)

0 = AHσst + σstHAT +
∑
r

2kbTr CrCTr

σst = kbT̄H−1 +
kb∆T

2

CL

CR2 + L

 1 0 −R
0 −1 R
−R R 0


〈Q̇r〉 = Tr[(HσH− kbTrH)CrCTr ] =⇒ 〈Q̇1〉 = −〈Q̇2〉 = −

kb∆T

2

R

CR2 + L
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Application: cooling a resistor
A simple circuit-based machine

C1

L

C2R1 R2

C1

R1

C2

R2

L

2 - Isothermal refrigeration (T1 = T2 = T )

We consider a simple driving protocol:

C1 = C + ∆C cos(ωdt)

C2 = C + ∆C cos(ωdt+ φ)

And compute the asymptotic cycle averages:

〈Ẋ〉c = lim
t→∞

ωd

2π

∫ t+ 2π
ωd

t
〈Ẋ〉

In this case, we need to solve:

d

dt
σ(t) = AH(t)σ(t) + σ(t)H(t)AT +

∑
r

2kbTr CrCTr

For periodic driving, under stability conditions, σ(t) is asymptotically periodic:

H(t) =

+∞∑
k=−∞

Hk eikωdt. =⇒
asymptotically

σ(t) =

+∞∑
k,k′=−∞

σk,k′ e
i(k−k′)ωdt
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Application: cooling a resistor
A simple circuit-based machine

C1

L

C2R1 R2

C1

R1

C2

R2

L

3 - Isothermal refrigeration (T1 = T2 = T )

In the weak driving (∆C � C) and adiabatic (ωd � 1/
√
LC) limits we can obtain analytical

results:

〈Ẇ 〉c = 〈Q̇1〉c + 〈Q̇2〉c = kbT (ωd∆C)2 R(CR2 cos(θ) + CR2 + 2L)

8C(CR2 + L)
+O(ω3

d)

〈Q̇1/2〉c = ∓kbT ωd(∆C)2 R4 sin(θ)

8(CR2 + L)2
+
〈Ẇ 〉c

2
+O(ω3

d)

Coefficient of Perfomance:

CoP =
|〈Q̇1〉c|
〈Ẇ 〉c

=
1

ωd

R sin(θ)/(CR2 + L)

cos(θ) + 1 + 2L/(CR2)
−

1

2

Maximum driving frequency:

ωmax
d =

2(RC)−1

1 + L/(CR2)

sin(θ)

cos(θ) + 1 + 2L/(CR2)
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Application: cooling a resistor
A simple circuit-based machine

C1

L

C2R1 R2

C1

R1

C2

R2

L

Numerical vs analytical results: (τ0 =
√
LC, τd = RC, τ0 = τd)

0 1 2 3 4 5 6
−2

−1

0

1

2
·10−2

(a)

ωdt

〈Q̇
〉(
k
b
T
/
τ 0

)

Q̇1

Q̇2

〈Q̇1〉c
〈Q̇2〉c

0 2 4 6 8

·10−2

0

0.2

0.4

0.6

0.8

1

·10−2

(b)

ωd (2π/τ0)

〈Q̇
〉 c

(k
b
T
/τ

0
)

〈Q̇1〉c Analytical

〈Q̇2〉c Analytical

〈Q̇1〉c Numerical

〈Q̇2〉c Numerical

0 0.2 0.4 0.6 0.8

−1

0

1

·10−3

(c)

∆C/C

〈Q̇
〉 c

(k
b
T
/
τ 0

)

〈Q̇1〉c Analytical

〈Q̇2〉c Analytical

〈Q̇1〉c Numerical

〈Q̇2〉c Numerical

(a) Asymptotic cycle of the heat currents for ∆C/C = 1/2 and ωd/(2π) = 10−2/τd (dashed lines indicate cycle averages).
(b) Average heat currents versus driving frequency for ∆C/C = 0.5.

(c) Average heat currents versus driving strength for ωd/(2π) = 10−2/τd.
For all cases we took θ = π/2 and T1 = T2 = T .
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How were these results obtained?
Generalized Lyapunov equation

d

dt
σ(t) = AH(t)σ(t) + σ(t)H(t)AT +

∑
r

2kbTr CrCTr

H(t) =

+∞∑
k=−∞

Hk eikωdt. =⇒
asymptotically

σ(t) =

+∞∑
k,k′=−∞

σk,k′ e
i(k−k′)ωdt

How to find the σk,k′ given Hk? We can define:

S =



. . .

σ2
−1,−1 σ2

−1,0 σ2
−1,1

σ2
0,−1 σ2

0,0 σ2
0,1

σ2
1,−1 σ2

1,0 σ2
1,1

. . .


Dr =



. . .

0 0 0
0 CrCTr 0
0 0 0

. . .


And then just solve the Lyapunov equation:

AS + SA† +
∑
r

2kbTrDr = 0

This is a particularly simple problem well suited for automatic optimization.
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Generalization to quantum noise
Preliminary comments

Canonical quantization of electrical circuits:

1 Write down a Lagrangian for the circuit L(x, ẋ)

2 Identify the conjugate momentum variables p = ∂L/∂ẋ and build the Hamiltonian
H = ẋT p− L

3 Promote x and p to quantum mechanical operators and impose canonical commutation
relations [xi, pj ] = i~δi,j

4 If there are resistors, we can explicitly model them as collections of harmonic modes
(Caldeira-Legget model)

5 In the end, we obtain:
HT = Hcircuit +

∑
r

Hr +
∑
r

Hint,r
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H = ẋT p− L

3 Promote x and p to quantum mechanical operators and impose canonical commutation
relations [xi, pj ] = i~δi,j

4 If there are resistors, we can explicitly model them as collections of harmonic modes
(Caldeira-Legget model)

5 In the end, we obtain:
HT = Hcircuit +

∑
r

Hr +
∑
r

Hint,r

Nahuel Freitas Design of heat pumps with parametrically driven linear electrical circuitsJune 2019 14 / 25



Generalization to quantum noise
Preliminary comments

Canonical quantization of electrical circuits:

1 Write down a Lagrangian for the circuit L(x, ẋ)
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Generalization to quantum noise
Preliminary comments

There is a limitation: it requires a full specification of stray degrees of freedom

C1

L

C2R1 R2

This circuit cannot be directly quantized

We would like to have a tool to study circuits at low temperatures without having to worry
about irrelevant degrees of freedom.
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Generalization to quantum noise
Semiclassical treatment

Classical Johnson-Nyquist noise:

〈∆v(t)∆v(t′)〉 = 2RkbT δ(t− t′) =⇒ S(ω) =
RkbT

π

Quantum Johnshon-Nyquist noise:

‘
〈
∆v(t)∆v(t′)

〉
’ =

〈
∆v(t)∆v(t′) + ∆v(t′)∆v(t)

2

〉
= f(t, t′)

S(ω) =
1

2π

∫ +∞

−∞
dτ e−iωτf(t, t′) =

R

π
~ω coth

(
~ω

2kbT

)
=

R

2π
~ω (N(ω) + 1/2)

Semiclassical treatment:

dx

dt
= A(t)H(t) x+ B(t)s(t) +

∑
r

√
2kbTr Cr ξ(t), Sξr (ω) =

1

2π

~ω
kbTr

(Nr(ω) + 1/2)

We do not promote x to quantum operators!
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Generalization to quantum noise
Green’s function techniques

For y = x− 〈x〉
dy

dt
= A(t)H(t) y +

∑
r

√
2kbTr Cr ξ(t), Sξr (ω) =

1

2π

~ω
kbTr

(Nr(ω) + 1/2)

We introduce the Green’s function of the circuit:

d

dt
G(t, t′)−A(t)H(t)G(t, t′) = 1δ(t, t′)

And we have the formal solution:

y(t) = G(t, 0) y(0) +

∫ t

0
dτ G(t, τ)

∑
r

√
2kbTr Cr(τ) ξ(τ)

Using this, we can find that:

σ(t) = 〈y(t)y(t)T 〉

= G(t, 0)σ(0)G(t, 0)T+∫ t

0
dτ
∑
r

√
2kbTr

[
G(t, 0)〈y(0)ξT (τ)〉Cr(τ)TG(t, τ)T +G(t, τ)Cr(τ)〈ξ(τ)y(0)T 〉G(t, 0)T

]
+

∫ t

0
dτ

∫ t

0
dτ ′
∑
r,r′

2kb
√
TrTr′ G(t, τ)Cr(τ)〈ξ(τ)ξ(τ ′)T 〉Cr′ (τ ′)TG(t, τ ′)T .
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Generalization to quantum noise
Green’s function techniques

Differential equation for the covariance matrix:

d

dt
σ(t) = AH(t)σ(t) + σ(t)H(t)AT +

∑
r

2kbTr
(
Ir(t) CrCTr + CrCTr Ir(t)T

)
where:

Ir(t) =

∫ t

0
dτ G(t, t− τ) 〈ξr(0)ξr(τ)〉

Classical limit:
In the limit of large temperatures we have 〈ξr(0)ξr(τ)〉 → δ(t− t′) and therefore

Ir(t) =

∫ t

0
dτ G(t, t− τ) 〈ξr(0)ξr(τ)〉 →

1

2
G(t, t) =

1

2

and we recover the classical result:

d

dt
σ(t) = AH(t)σ(t) + σ(t)H(t)AT +

∑
r

2kbTr CrCTr
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Generalization to quantum noise
Quantum heat currents

Differential equation for the covariance matrix:

d

dt
σ(t) = AH(t)σ(t) + σ(t)H(t)AT +

∑
r

2kbTr
(
Ir(t) CrCTr + CrCTr Ir(t)T

)
Quantum heat currents:

〈Q̇〉 =
1

2
Tr

[
H(t)

d

dt

(
〈x〉〈x〉T + σ

)]
Again, under the condition QRR = 0, we have:

〈Q̇r〉 = 〈jr〉〈vr〉+ Tr
[
(Hσ(t)H− 2kbTrHIr(t))CrCTr

]
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Quantum heat currents in frequency domain

Partial transform of the Green’s function

Ĝ(t, ω) =

∫ t

0
dτ e−iω(t−τ) G(t, τ) =⇒

d

dt
Ĝ(t, ω) = 1− [iω −AH(t)]Ĝ(t, ω)

Important property: d
dt

(
Ĝ†HĜ

)
− Ĝ† dH

dt
Ĝ− 2Ĝ†H(A)sHĜ = HĜ+ Ĝ†H

Convolution function and covariance matrix

Ir(t) =
1

2πkbTr

∫ +Λ

−Λ
dω ~ω Ĝ(t, ω)(Nr(ω) + 1/2) Λ: High frequency cut-off

σ(t) =
1

π

∑
r

∫ +Λ

−Λ
dω ~ω Ĝ(t, ω)DrĜ(t, ω)†(Nr(ω)+1/2) Dr = CrCTr

We can now enter all this information in our expression for the local heat currents

〈Q̇r〉 = 〈jr〉〈vr〉+ Tr
[
(Hσ(t)H− 2kbTrHIr(t))CrCTr

]
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Quantum heat currents in frequency domain
Generalization of Landauer-Büttiker formula

〈Q̇r〉 = 〈jr〉〈vr〉+
∑
r′

∫ +Λ

−Λ
dω ~ω fr,r′ (t, ω) (Nr′ (ω) + 1/2)

Non-diagonal elements: fr,r′ (t, ω) = 1
π

Tr
[
H(t)Ĝ(t, ω)Dr′ Ĝ(t, ω)†H(t)Dr

]
(r 6= r′)

Sum over first index: f̄r′ (t, ω) =
∑
r fr,r′ (t, ω) = 1

2π
Tr
[(
Ĝ† dH

dt
Ĝ− d

dt

(
G†HĜ

))
Dr′
]

Particular case: for static circuits (f̄ ′r = 0) we recover the usual Landauer-Büttiker formula

〈Q̇r〉 = 〈jr〉〈vr〉+
∑
r′

∫ +Λ

−Λ
dω ~ω fr,r′ (ω) (Nr′ (ω)−Nr(ω))

Main result
We have derived a generalized Landauer-Büttiker formula which is valid for arbitrary circuits,
with any number of resistors at arbitrary temperatures, and for arbitrary driving protocols.
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Landauer-Büttiker formula for periodic driving

Again, we consider periodic parametric driving: H(t) =
∑+∞
k=−∞Hk e

ikωdt

Then G(t, ω) is asymptotically periodic: Ĝ(t, ω) =
∑+∞
j=−∞ Ĝj(ω) eijωdt, where:

i(ω + jωd)Ĝj(ω) = 1δj,0 +A
∑
k

HkĜj−k(ω)

Then:

〈Q̇r〉c = 〈〈jr〉〈vr〉〉c +
∑
r′

∫ +Λ

−Λ
dω ~ω Fr,r′ (ω) (Nr′ (ω) + 1/2)

Fr,r′ (ω) =
1

π

∑
j,j′,k

Tr
[
HkĜj(ω)Dr′ Ĝ

†
j′ (ω)Hj′−j−kDr

]
for r′ 6= r (1)

F̄r′ (ω) =
∑
r

Fr,r′ (ω) =
1

2π

∑
j,k

ikωd Tr
[
Ĝ†j(ω)HkĜj−k(ω)Dr′

]
(2)
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Quantum limits for cooling

C1

L

C2R1 R2

C1

R1

C2

R2

L

Going back to our cooling scheme, what happens if we enter the quantum regime?

0 T ∗ 1 2 3

−1

0

1

·10−4

T (~/(kbτ0))

〈Q̇
〉 c

(~
τ
−
2

0
)

0 0.1 0.2 0.3 0.4 0.5

−4

−2

0

2

4

·10−6

T (~/(kbτ0))

〈Q̇
〉 1

(~
τ
−
2

0
)

τd/τ0 = 1

τd/τ0 = 2

τd/τ0 = 4

τ0 =
√
LC and τd = RC
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Quantum limits for cooling
Physical intuition

There are two different kind of contributions to the heat currents:

Transport of excitations

ω

Iα(ω)

ω2

ω1+kωd

ω

Iβ(ω)

ω2+kωd

ω1

kh̄ωd

kh̄ωd

kh̄ωd

〈Q̇〉 → 0 for T → 0

〈Q̇〉 ∝ γ

Pair creation of excitations

ω

Iα(ω)

ω

Iβ(ω)

kωd

kωd−ω
ω

kh̄ωdkh̄ωd

〈Q̇〉 → 0 for T → 0

〈Q̇〉 ∝ γ2

Master equations fail to describe this
contribution!

- Freitas, N., Paz JP. Physical Review E 95.1 (2017): 012146.
- Freitas, N., Gallego, R., Masanes, L., Paz, JP. Cooling to Absolute Zero: The Unattainability Principle
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Summary and next steps

arXiv:1906.11233

We have considered the stochastic description of general RLC circuits

We discussed the proper definition of heat under the white noise idealization

We derived a general formalism to compute the heat currents in electrical circuits that:
I Is valid for any number of resistors at arbitrary temperatures,
I arbitrary driving protocols,
I and strong coupling.

I It does not require the quantization of the circuit.

We will employ this formalism to study optimal thermal cycles in large and complex
electrical circuits.
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