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Multipartite
Coupled
Systems

Thermodynamic Consistency of 
Markovian Master Equations
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Long coarse-graining time
“Global limit” 

Environment resolves
all frequencies in
system’s spectrum

● Need global eigenstates
● Long time-scale
● Limited to strong coupling
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Multipartite
Coupled
Systems

Shorter coarse-graining time
“Local limit” 

Environment does not
resolve all frequencies in
system’s spectrum

Thermodynamic Consistency of 
Markovian Master Equations

● Short time-scale
● Weak to strong coupling
● Associated to “non autonomous” 

heat bath ?

Environment resolves
all frequencies in
system’s spectrum

● Need global eigenstates
● Long time-scale
● Limited to strong coupling

Strasberg el al., PRX 7 (2017)
De Chiara et al, NJP 20, 113024 (2018)

Long coarse-graining time
“Global limit” 
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Thermodynamic Consistency of 
Markovian Master Equations

Periodically 
Driven 

Systems

Floquet “Local”

Environment resolves the 
coupling to the drive

Environment does not see 
the drive

Multipartite
Coupled
Systems

Shorter coarse-graining time
Local limit 

Environment does not
resolve all frequencies in
system’s spectrum

Environment resolves
all frequencies in
system’s spectrum

Long coarse-graining time
Global limit

● Need global eigenstates
● Long time-scale
● Limited to strong coupling

● Short time-scale
● Weak to strong coupling
● Associated to “non autonomous” 

heat bath ?
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Resonance fluorescence

● Canonical situation of quantum optics
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Resonance fluorescence

● Canonical situation of quantum optics
● Thermodynamics known based on Floquet Master Equation 

→ Valid only for
→ Require long coarse-graining in time 

Szczygielski et al., PRE 87(2013); Langemeyer et al., PRE 89(2014);
Cuetara et al., NJP 5 (2015); Donvil, J. Stat. Mech. 043104 (2018)
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Optical Bloch Equations
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Optical Bloch Equations

→ Valid for
→ Valid on short time-scales

Carmichael, Statistical Methods in Quantum Optics 1, Springer (1999)



C. Elouard, Thermodynamics of Fluorescence 9

Optical Bloch Equations

Dissipation and 
Hamiltonian part 
do not commute!→ Steady state with coherences, 

     different from thermal equilibrium state
→ Same property true also for non-adiabatic master equations

 Dann et al., PRA 98 (2018) 

Local !
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Optical Bloch Equations

Dissipation and 
Hamiltonian part 
do not commute!

What is the corresponding thermodynamic description?
(is there a consistent, autonomous,

 thermodynamics description?)

Local !
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First law: work from the drive

● Internal energy

● Work flow

Alicki, R., J. Phys. A 12 (1979)
Vinjanampathy, S. & Anders, J., Cont. Phys. 57 (2016)

Non-zero
(positive)

at steady state
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First law: other contributions

● Total ``heat’’

● Two parts
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“Classical” contribution

Counts photons 
exchanged 

with the bath at 
the atomic frequency
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“Classical” contribution

Corresponding entropy production 
looks like classical and “usual” 

global Lindblad equation analysis 

Alicki, J. Phys. A 12 (1979)
Breuer et al., Oxford University Press (2007)
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“Quantum” contribution

Energy change from 
coherence erasure 

by the reservoir
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“Quantum” contribution

Energy change from 
coherence erasure 

by the reservoir

Another candidate 
second law ???

Not expressed as 
a Spohn inequality...
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“Quantum” contribution

Need to find who provides this energy
→ Requires to precise more the environment

Energy change from 
coherence erasure 

by the reservoir
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Repeated interaction model

• Coupling
   turned on during
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Repeated interaction model

• Coupling
   turned on during

• After interaction
→ Turning off coupling requires to perform some work  

 

Strasberg el al., PRX 7 (2017)
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Repeated interaction model

• First law

• Second law  
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Repeated interaction model

• First law

• Second law  

Consistent thermodynamic description
BUT

Non autonomous (source of work in reservoir)
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Repeated interaction model

• First law

• Second law  

  Decoherence of the bath is missing !

Consistent thermodynamic description
BUT

Non autonomous (source of work in reservoir)
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Repeated interaction model
+ measurement

• Coupling
   turned on during
   then measurement of cavity
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Repeated interaction model
+ measurement

• Coupling
   turned on during
   then measurement of cavity

• After measurement
• Energy from measuring device
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Repeated interaction model
+ measurement

• Coupling
   turned on during
   then measurement of cavity

• After measurement
• Energy from measuring device

  

 

Still non autonomous ! 
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Repeated interaction model
+ measurement

• Coupling
   turned on during
   then measurement of cavity

• After measurement
• Energy from measuring device

  

 

Still non autonomous ! 

A bath is supposed to
“measure itself” ?
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Macroscopic reservoir

• Coupling                      always on
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Macroscopic reservoir

• Coupling                      always on

• Compute           using the approximations
   leading to optical Bloch equations
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• Coupling                      always on

• Compute           using the approximations
   leading to optical Bloch equations
• Results: 
   

  

 

Macroscopic reservoir
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The bath 
measures itself…

and pays for it

Macroscopic reservoir

• Coupling                      always on

• Compute           using the approximations
   leading to optical Bloch equations
• Results: 
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• Corresponding second law 
   

  

 

• The bath provides both classical and quantum contributions
   

  

M. Esposito et al., NJP 12, 013013 (2010)

Macroscopic reservoir
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Agreement with Floquet description

Bloch eq

Floquet eq

H
ea

t

Common regime of validity 
of both descriptions

Perfect agreement
for the value of
total heat flow

Heat flow at steady state
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Summary

● Optical Bloch Equations are compatible w/ thermodynamics
● Two different Second laws 

→ Autonomous macroscopic bath
→ Repeated interaction w/ micro bath (requires extra work)
→ Needs to know more than dynamics to find thermodynamics

● The difference corresponds to coherence erasure cost 
→ Quantum effect

● Test: measure average energy change of the bath
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Outlook

● Intermediate Second laws when increasing the bath size.

● Stochastic thermodynamics from quantum jump 
trajectories → fluctuation theorem.

● Thermodynamics of local master equations
→ Sometimes they require an external source of work, but
     not always. 
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Thank you for your attention!

Andrew N. Jordan
University of Rochester, NY

Alexia Auffèves
Institut Néel, Grenoble, 

France

Massimiliano Esposito
University of Luxembourg

Thermodynamic Consistency of the Optical Bloch Equations
Soon on the arXiv
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Supplementary slides
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Derivation of Bloch Equations

Environment Spectral Density

Breuer, et al., Oxford UniV. Press (2007)
Alicki et al., PRA 73 (2006)

Kubo-Martin-Schwinger relation

We use a generalization 
of the singular coupling limit
which preserves the thermodynamic 
properties of the bath
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