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Use the Lindblad operators for the 
local subsystems and the Hamiltonian 
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LME predicts 

spontaneous cold 
to hot current! !



WHAT'S WRONG WITH LOCAL ME?



WHAT'S WRONG WITH LOCAL ME?

• Local Master Equations are in Lindblad form.



WHAT'S WRONG WITH LOCAL ME?

• Local Master Equations are in Lindblad form.

• Hence, they are completely positive trace preserving maps.



WHAT'S WRONG WITH LOCAL ME?

• Local Master Equations are in Lindblad form.

• Hence, they are completely positive trace preserving maps.

• Hence, they must correspond to microscopic physical models.



WHAT'S WRONG WITH LOCAL ME?

• Local Master Equations are in Lindblad form.

• Hence, they are completely positive trace preserving maps.

• Hence, they must correspond to microscopic physical models.

• One possibility is to use collisional models  
(aka repeated interactions):

E5 E4 E3 E2 E1

S



WHAT'S WRONG WITH LOCAL ME?

• Local Master Equations are in Lindblad form.

• Hence, they are completely positive trace preserving maps.

• Hence, they must correspond to microscopic physical models.

• One possibility is to use collisional models  
(aka repeated interactions):
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The goal of this talk is to show: 
Thermodynamic laws are observed provided 
one includes all energy/entropy contributions.



OUTLINE

• Collisional models 

• Thermodynamic cost of Local 
Master Equations 

• Further considerations 

• Bonus: Three-qubit 
refrigerators with two-body 
interactions  
(see Adam's poster) 

• Conclusions
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Next steps: 
1)Assume thermal ancillas: 

2)Second order expansion in $ 
3)Limit $→0 

ρE =
N

⨂
i= 1

e−βiHEi

Tr e−βiHEi

dρS

dt
= − i[HS, ρS] +

N

∑
i= 1

Di(ρS), Di(ρS) = − 1
2 TrEi

[Vi, [Vi, ρS⊗ ρEi
]] .
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HS = ∑
i

ωia†
i ai + ∑

i≠j
Kija†

i aj + Lijaiaj

HEi
= ωib†

i bi Vi = gi(a†
i bi + aib†

i )

dρS

dt
= − i[HS, ρS] +

Nbaths

∑
i= 1

Di(ρS),

Di(ρS) = γi(n i + 1)ℒai
(ρS) + γin iℒa†

i
(ρS)

ℒσ(ρS) = 2σρSσ† − σ†σρS− ρSσ†σ

⇒

Local Master equation!

n i = 1
eβiωi − 1

γi = g 2
i



THERMODYNAMICS
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Since Htot is time dependent ⇒ external work

δWext = ∫
(n + 1)τ

n τ ⟨ ∂Htot
∂t ⟩ dt .

At steady state: ·U = 0
·Qi = tr [Di(ρS)Hi] = γiωi(n i − ⟨a†

i ai⟩)

First law:

·Wext = −
Nbaths

∑
i

·Qi = −
Nbaths

∑
i

γiωi(n i − ⟨a†
i ai⟩)

Lack of detailed balance is responsible for the external work

De Chiara, Landi, Hewgill, Reid, Ferraro, Roncaglia, Antezza, NJP 20, 113024 (2018) 
see also: Barra, Sci. Rep. 2015; Strasberg et al., PRX 2017
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HS = H1 + H2 + HI

Hi = ωia†
i ai HI = ϵ(a†

1 a2 + a1a†
2 )

·Q1 = 2γϵ2

Δ2 ω1(n 1 − n 2),

·Q2 = − 2γϵ2

Δ2 ω2(n 1 − n 2),

·Wext = − 2γϵ2

Δ2 (ω1 − ω2)(n 1 − n 2)

Steady state:

ω1 = ω2 ⇒ ·Q1 = − ·Q2 ⇒ ·Wext = 0

Considerations:
·Q1

·Q2and do not depend on 
T1 − T2 but rather on n 1 − n 2

De Chiara, Landi, Hewgill, Reid, Ferraro, Roncaglia, Antezza, NJP 20, 113024 (2018)
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Engine T1
T2

< ω1
ω2

< 1 η = | ·Wext |
·Q2

= 1 − ω1
ω2

Refrigerator ω1
ω2

< T1
T2

COP =
·Q1

·Wext
= ω1

ω2 − ω1

ω1
ω2

= T1
T2

Carnot's limit: 
zero work/zero cooling η = 1 − T1

T2

De Chiara, Landi, Hewgill, Reid, Ferraro, Roncaglia, Antezza, NJP 20, 113024 (2018)
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RELATION TO MARTINEZ & PAZ, PRL 2013

"It is impossible to build a 
quantum absorption 

refrigerator using [static] 
linear networks"

De Chiara, Landi, Hewgill, Reid, Ferraro, Roncaglia, Antezza, NJP 20, 113024 (2018)

Although our network is linear, it 
uses time-dependent Hamiltonians 
so the network is essentially driven.

HEAT
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FURTHER CONSIDERATIONS

• 1st and 2nd law of thermodynamics are fulfilled: energy 
conservation and positive entropy production hold.

• The collisional model is an example of generalised environments 
defined by Strasberg et al., PRX 2017, providing a source of both 
heat and work.

• Our analysis is general and works for quantum systems of any 
dimension.

• See our paper for a chain of many oscillators coupled by general 
interactions, e.g. counter-rotating terms.

De Chiara, Landi, Hewgill, Reid, Ferraro, Roncaglia, Antezza, NJP 20, 113024 (2018)
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SPECIAL ISSUE

• "Fluctuation Relations and Nonequilibrium 
Thermodynamics in Classical and Quantum Systems" 

• Journal: MDPI Entropy (IF 2.3) 

• Topics: 
• Fluctuation relations in classical stochastic thermodynamics 
• Definitions of work, heat, and entropy and related fluctuation theorems in 

quantum systems 
• Quantum engines and refrigerators 
• Resource theory of quantum thermodynamics 
• Role of quantum correlations and coherence in quantum thermodynamics 

• Deadline: 31/12/2019
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Postdoc position on 
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