Heat current and fluctuations of single-electron excitations: Fundamental properties and detection

Nastaran Dashti,

Microtechnology and Nanoscience

Janine Splettstoesser, Maciej Misiorny,

Peter Samuelsson

Introducing single-electron sources (SES)

Relevant Observables as a tool to characterize SES

How to detect observables?

Detection scheme

Reading out Observables

Outlook: Energy-resolved detection

Why single electron sources?

control over emitted electrons

What are the properties of emitted electrons \mathbf{r}

On-demand single-electron source

Superconducting turnstiles:

Pekola, Jukka P. et al., Nat. Phys. 4, 120 (2007)

Surface acoustic wave :

K. Flensberg et al., Int. J. Mod. Phys. B **13**, 2651 (1999); R. P. G. McNeil et al., Nature **477**, 439 (2011); S. Hermelin et al., Nature **477**, 435 (2011)

Dynamical quantum dots:

C. Leicht et al., Semicond. Sci. Technol. **26**, 055010 (2011); M. D. Blumenthal et al., Nat. Phys. **3**, 343 (2007)

Lorentzian-shaped time-dependent bias voltage (Leviton)

Dubois, J. et al., Nature **502**, 659 (2013); T. Jullien et al., Nature **514**, 603 (2014)

On-demand single-electron source

Slowly time-dependently driven mesoscopic capacitor

Experiment: Gabelli, J. et al., Science 313, 499 (2006); Fève, G. et al. Science 316, 1169 (2007)

On-demand single-electron source

Slowly time-dependently driven mesoscopic capacitor

Experiment: Gabelli, J. et al., Science 313, 499 (2006); Fève, G. et al. Science 316, 1169 (2007)

QTD-2019

How to charactrized SES by observables ?

Heat/charge current Heat/charge-current noise

How to read out these observables?

Through macroscopic fluctuations of a small contact Increasing selectivity by energy-resolved readout

Observables

Time-resolved charge current: $I_{\alpha}(t)$

dashti@chalmers.se

Observables

Time-resolved charge current:

Spectral current:

 $i_{\alpha}(E)$

 $I_{\alpha}(t)$

 $I_{\alpha}(t)$ **Time-resolved charge current:**

Spectral current:

Time-resolved heat current:

 $J_{\alpha}(t)$

Time-resolved charge current: $I_{\alpha}(t)$ Spectral current: $i_{\alpha}(E)$ Time-resolved heat current: $J_{\alpha}(t)$

Fluctuations

Charge-current noise:

$$\begin{split} &\Delta \hat{I}_{\alpha}(t) = \hat{I}_{\alpha}(t) - \langle \hat{I}_{\alpha}(t) \rangle \\ &\mathcal{P}_{\alpha\beta}^{II} = \int_{0}^{\mathcal{T}} \frac{dt}{\mathcal{T}} \int_{-\infty}^{\infty} dt' \langle \Delta I_{\alpha}(t') \Delta I_{\beta}(t+t') \rangle \\ & \text{Heat:} \quad \mathcal{P}_{\alpha\beta}^{JJ} \qquad \text{Mixed:} \quad \mathcal{P}_{\alpha\beta}^{IJ} \end{split}$$

QTD-2019

dashti@chalmers.se

Time-resolved charge current of emitted particles

Dashti, N., Misiorny, M., Kheradsoud, S., Samuelsson, P., and Splettstoesser, J. arXiv,1902.01209 (2019), Accepted for publication in PRB

QTD-2019

dashti@chalmers.se

Time-resolved charge current of emitted particles

Dashti, N., Misiorny, M., Kheradsoud, S., Samuelsson, P., and Splettstoesser, J. arXiv,1902.01209 (2019), Accepted for publication in PRB

QTD-2019

dashti@chalmers.se

How to detect heat-current noises?

Detection scheme

Dashti, N., Misiorny, M., Samuelsson, P., and Splettstoesser, J. Phys. Rev. Appl. 10(2), 024007 (2018)

Detection scheme

Dashti, N., Misiorny, M., Samuelsson, P., and Splettstoesser, J. Phys. Rev. Appl. 10(2), 024007 (2018)

Detection scheme

Dashti, N., Misiorny, M., Samuelsson, P., and Splettstoesser, J. Phys. Rev. Appl. 10(2), 024007 (2018)

Average potential and temperature

$$\overline{\mu}_{\rm p} = -\frac{h}{e}\overline{I}_{\rm s} = 0$$

Dashti, N., Misiorny, M., Samuelsson, P., and Splettstoesser, J. Phys. Rev. Appl. 10(2), 024007 (2018)

Average potential and temperature

Dashti, N., Misiorny, M., Samuelsson, P., and Splettstoesser, J. Phys. Rev. Appl. 10(2), 024007 (2018)

Relate current fluctuations to macroscopic fluctuations

Dashti, N., Misiorny, M., Samuelsson, P., and Splettstoesser, J. Phys. Rev. Appl. 10(2), 024007 (2018)

dashti@chalmers.se

Relate current fluctuations to macroscopic fluctuations

$$T \ll \tau_{RC}, \tau_{E}$$
Charge relaxation time
$$\tau_{RC} = C/(Dg)$$
Energy relaxation time
$$\tau_{E} = C_{E}/\kappa$$

$$\Delta I_{p}(t) = \frac{\delta I_{p}(t) - Dg \ \Delta \mu_{p}(t)/e}{\Delta J_{p}(t) = \frac{\delta J_{p}(t) - \kappa \Delta T_{p}(t)}$$

Bare/fast fluctuations

Slow fluctuations

Dashti, N., Misiorny, M., Samuelsson, P., and Splettstoesser, J. Phys. Rev. Appl. 10(2), 024007 (2018)

Noise

$$\mathcal{T} \ll \tau_{RC}, \tau_{E}$$
Charge relaxation time
$$\tau_{RC} = C/(Dg)$$
Energy relaxation tim
$$\tau_{E} = C_{E}/\kappa$$

$$\mathcal{P}_{p}^{\mu\mu}(\omega) = \frac{e^{2}}{(Dg)^{2}} \frac{1}{1 + (\omega\tau_{RC})^{2}} \mathcal{P}_{p}^{II}$$
$$\mathcal{P}_{p}^{TT}(\omega) = \frac{1}{\kappa^{2}} \frac{1}{1 + (\omega\tau_{E})^{2}} \mathcal{P}_{p}^{JJ}$$

Dashti, N., Misiorny, M., Samuelsson, P., and Splettstoesser, J. Phys. Rev. Appl. 10(2), 024007 (2018)

QTD-2019

Optimizing parameters

 $\mathcal{P}_{\rm p} = \mathcal{P}_0 + \mathcal{P}_{\rm dir} + \mathcal{P}_{\rm ind}$ **Back-action of** Thermal Source information the probe noise

Dashti, N., Misiorny, M., Samuelsson, P., and Splettstoesser, J. Phys. Rev. Appl. 10(2), 024007 (2018)

Optimizing parameters

Dashti, N., Misiorny, M., Samuelsson, P., and Splettstoesser, J. Phys. Rev. Appl. 10(2), 024007 (2018)

Characterization of single electron sources from transport measurement with energy-selective transmission

Kheradsoud, S., Dashti, N., Misiorny, M., Potts, P. P., Splettstoesser, J., & Samuelsson, P. arXiv:1904.03912 (2019)

Dashti, N., Kheradsoud, S., Misiorny, M., Samuelsson, P., and Splettstoesser, J. In preparation.

QTD-2019

dashti@chalmers.se

Energy-selective detector (thermoelectric effect)

$$\left(\begin{array}{c}I_{\rm R}\\J_{\rm R}\end{array}\right) = \left(\begin{array}{cc}G & L\\M & K\end{array}\right) \left(\begin{array}{c}\Delta\mu/e\\\Delta T\end{array}\right)$$

Dashti, N., Kheradsoud, S., Misiorny, M., Samuelsson, P., and Splettstoesser, J. In preparation.

Energy-selective detector (thermoelectric effect)

$$\begin{pmatrix} \bar{I}_{\mathsf{R}} \\ \bar{J}_{\mathsf{R}} \end{pmatrix} = \begin{pmatrix} G + G_{\mathsf{s}} & L + L_{\mathsf{s}} \\ M + M_{\mathsf{s}} & K + K_{\mathsf{s}} \end{pmatrix} \begin{pmatrix} \Delta \mu/e \\ \Delta T \end{pmatrix} + \begin{pmatrix} \bar{I}_{\mathsf{s}}^{\mathsf{dir}} \\ \bar{J}_{\mathsf{s}}^{\mathsf{dir}} \end{pmatrix}$$

Modification of TE coefficient due to the response of the SES current to bias via filtering.

Current from the SES modified by filtering

Dashti, N., Kheradsoud, S., Misiorny, M., Samuelsson, P., and Splettstoesser, J. In preparation.

Energy-selective detector (thermoelectric effect)

$$\begin{pmatrix} \bar{I}_{\mathsf{R}} \\ \bar{J}_{\mathsf{R}} \end{pmatrix} = \begin{pmatrix} G + G_{\mathsf{s}} & L + L_{\mathsf{s}} \\ M + M_{\mathsf{s}} & K + K_{\mathsf{s}} \end{pmatrix} \begin{pmatrix} \Delta \mu/e \\ \Delta T \end{pmatrix} + \begin{pmatrix} \bar{I}_{\mathsf{s}}^{\mathsf{dir}} \\ \bar{J}_{\mathsf{s}}^{\mathsf{dir}} \end{pmatrix}$$

Modification of TE coefficient due to the response of the SES current to bias via filtering.

Current from the SES modified by filtering

J. Waldie et al.: Phys. Rev. B 92, 125305 (2015) Dashti, N., Kheradsoud, S., Misiorny, M., Samuelsson, P., and Splettstoesser, J. In preparation.

Energy-selective detector (thermoelectric effect)

$$\begin{pmatrix} \bar{I}_{\mathsf{R}} \\ \bar{J}_{\mathsf{R}} \end{pmatrix} = \begin{pmatrix} G + G_{\mathsf{s}} & L + L_{\mathsf{s}} \\ M + M_{\mathsf{s}} & K + K_{\mathsf{s}} \end{pmatrix} \begin{pmatrix} \Delta \mu/e \\ \Delta T \end{pmatrix} + \begin{pmatrix} \bar{I}_{\mathsf{s}}^{\mathsf{dir}} \\ \bar{J}_{\mathsf{s}}^{\mathsf{dir}} \end{pmatrix}$$

Modification of TE coefficient due to the response of the SES current to bias via filtering.

Current from the SES modified by filtering

J. Waldie et al.: Phys. Rev. B 92, 125305 (2015) Dashti, N., Kheradsoud, S., Misiorny, M., Samuelsson, P., and Splettstoesser, J. In preparation.

Summary

Characterizing SES by transport properties

Dashti, N., Misiorny, M., Kheradsoud, S., Samuelsson, P., and Splettstoesser, J. arXiv,1902.01209 (2019). Accepted for publication in PRB

Detecting charge and energy transport properties

Dashti, N., Misiorny, M., Samuelsson, P., and Splettstoesser, J. Phys. Rev. Appl. 10(2), 024007 (2018)

Detecting transport quantities by energy-selective transmission

Dashti, N., Kheradsoud, S., Misiorny, M., Samuelsson, P., and Splettstoesser, J. In preparation.

QTD-2019

dashti@chalmers.se