CHARACTERIZING WORK IN COMPLEX, CHAOTIC QUANTUM SYSTEMS

AURÉLIA CHENU June 27th, 2019

AC, I. Egusquiza, J. Molina-Vilaplana, A. del Campo, Sci. Rep. 8:12634 (2018)

AC, J. Molina-Vilaplana, A. del Campo, Quantum 3:127 (2019)

1. WORK IS NOT AN OBSERVABLE $\langle W \rangle = \int p(W)WdW$

Driven Isolated System

 $U(\tau) = \mathcal{T} \exp \left| -i \int_0^\tau ds \hat{H}_s \right|$

Work requires two projective measurements

J. Kurchan ArXiv:0007360 P. Talkner, E. Lutz, P. Hänggi PRE (2007)

$$p_{\tau}(W) := \sum_{n,m} p_n^0 \ p_{m|n}^{\tau} \delta \left[W - \left(E_m^{\tau} - E_n^0 \right) \right]$$

Experimentally measured in simple quantum systems

NMR setting Batalhão et al. PRL (2014)

Driven oscillator (trapped ion)

S. An et al. Nat. Phys. (2015)

Ultracold atom

F. Cerisola et al. Nat. Comm. (2017)

Aurélia Chenu, DIPC

2. A DYNAMICAL APPROACH TO WORK

$$p_{\tau}(W) := \sum_{n,m} p_n^0 \ p_{m|n}^{\tau} \delta \left[W - \left(E_m^{\tau} - E_n^0 \right) \right] = \frac{1}{2\pi} \int_{\infty} dt \ \chi(t,\tau) e^{-itW}$$

Recast the characteristic function of the work distribution function as a Loschmidt echo amplitude

$$\chi(t,\tau) = \operatorname{Tr}\left(\mathbf{U}^{\dagger}(\tau)\mathbf{e}^{\mathrm{itH}_{\tau}}\mathbf{U}(\tau)\,\mathbf{e}^{-\mathrm{itH}_{0}}\rho_{\mathrm{mix}}\right)$$

For pure state
$$|\Psi_{0}\rangle = |n_{0}\rangle$$

Silva PRL (2008)
 $\chi(t, 0^{+}) = \langle j_{0}|e^{+itH_{\tau}}e^{-itH_{0}}|j_{0}\rangle$
 $= \langle \Psi_{t}|\Psi_{0}\rangle$
Sudden Quench
 H_{τ}
 $\chi(t, \tau) = \langle \Psi_{0}|e^{+itH_{\tau}^{\text{eff}}}e^{-itH_{0}}\mathbf{1}_{R}|\Psi_{0}\rangle$
 $\chi(t, \tau) = \langle \Psi_{1}|\Psi_{0}\rangle$
 $\chi(t, \tau) = \langle \Psi_{1}|\Psi_{0}\rangle$
 $\chi(t, \tau) = \langle \Psi_{1}|\Psi_{0}\rangle$
 $\chi(t, \tau) = \langle \Psi_{1}|\Psi_{0}\rangle$

Aurélia Chenu, DIPC

AC, I. Egusquiza, J. Molina-Vilaplana, A. del Campo, Sci. Rep. 8:12634 (2018)

LOSCHMIDT ECHO AND WORK FLUCTUATIONS

$$\begin{split} \chi(t,\tau) &= \langle \Psi_t | \Psi_0 \rangle \\ \\ \mathcal{L}(t) &= |\langle \Psi_t | \Psi_0 \rangle|^2 \\ &= e^{-\sigma_W^2 t^2 + \mathcal{O}(t^4)} \\ \psi_0 \rangle & \bullet e^{-\frac{i}{\hbar}H_1 t} \\ e^{\frac{i}{\hbar}H_2 t} e^{-\frac{i}{\hbar}H_1 t} | \psi_0 \rangle \\ \bullet & \bullet e^{\frac{i}{\hbar}H_2 t} \end{split}$$

A measure of irreversibility

Josef Loschmidt (1821 - 1895)

Aurélia Chenu, DIPC

Lectures on Gravity and Entanglement, M. Van Raamsdonket (2015)

3. INFORMATION SCRAMBLING

Thermofield double field: purified thermal state

The TDF is dual to an eternal BH

(Maldacena 2003)

Loschmidt echo from analytical continuation of the partition function

$$\mathcal{L}(t) = |\langle \Psi_t | \Psi_0 \rangle|^2 = \left| \frac{Z(\beta + it)}{Z(\beta)} \right|^2$$

WORK STATISTICS OF CHAOTIC QUANTUM SYSTEMS

AC, J. Molina-Vilaplana, A. del Campo, Quantum 3:127 (2019)

CHAOTIC SYSTEMS AS PARADIGMATIC COMPLEX SYSTEMS

e.g.

Figure 1.1. Slow neutron resonance cross-sections on thorium 232 and uranium 238 nuclei. Reprinted with permission from The American Physical Society, Rahn et al., Neutron resonance spectroscopy, X, *Phys. Rev. C* 6, 1854–1869 (1972).

RANDOM MATRICES THEORY (RMT)

John Wishart Random Matrices (1928)

Eugene Paul Wigner Random Matrices Ensembles of Hamiltonian (1955)

Freeman Dyson Ensembles of Hamiltonian GOE, GUE, GSE (1962)

	Μ	U
GOE	Real symmetric	Orthogonal
GUE	Complex hermitian	Unitary
G <mark>S</mark> E	Quaternion selfdual	Symplectic

Wigner's Semicircle Gaussian Unitary Ensembles (GUE)

RANDOM MATRICES THEORY (RMT)

WORK STATISTICS IN CHAOTIC QUANTUM SYSTEMS 1/2

See related work: AC, J. Molina-Vilaplana, A. del Campo, Quantum 3:127 (2019) RMT large N asymptotics: M. Łobejko, J. Łuczka, P. Talkner PRE 95, 052137 (2017) Disordered many-body systems: Y Zheng and D. Poletti, arXiv:1806.02555

Aurélia Chenu, DIPC

WORK STATISTICS 2/2: MEAN AND FLUCTUATIONS

$$\langle W \rangle = \langle \hat{H}_{\tau} \rangle - \langle \hat{H}_{0} \rangle \qquad \qquad \sigma_{W}^{2} = \langle W^{2} \rangle - \langle W \rangle^{2}$$

Fluctuations monotonically decay from the infinite-temperature value N, saturating at (N + 1)/2 in the low-temperature regime.

LOSCHMIDT ECHO IN CHAOTIC QUANTUM SYSTEMS

$$\mathcal{L}(t) = |\langle \Psi_t | \Psi_0 \rangle|^2 = \frac{1}{\langle Z(\beta)^2 \rangle} \left\langle \left\langle \left| \operatorname{Tr} \left(e^{-\sigma_\tau \hat{H}_\tau} e^{-\sigma_0 \hat{H}_0} \right) \right|^2 \right\rangle \right\rangle \right\rangle$$
$$= \frac{1}{\langle Z(\beta)^2 \rangle} \frac{1}{N^2 - 1} \left(g(0, t) g(\beta, t) + N \langle Z(2\beta) \rangle - \frac{1}{N} \langle Z(2\beta) \rangle g(0, t) - \frac{1}{N} g(\beta, t) N \right)$$

Dependence on the spectral form factor illustrates the importance of correlations between energy eigenvalues

GUE spectral form factor

$$g(\beta,t) \equiv \left\langle |Z(\beta+it)|^2 \right\rangle$$

Aurélia Chenu, DIPC

AC, J. Molina-Vilaplana, A. del Campo, Quantum 3:127 (2019)

achenu@dipc.org