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Quasistatics

Thermal bath T = 1/β

control on H(~λ(t))

operational time τ →∞

⇒ ρ(t) ∼= ωβ(H(t))

:= e−βH(t)/Z(t)

Any X 7→ Y is reversible

∆F = ∆W ⇔ ∆S = β∆Q

UNIVERSAL...
...but NO POWER!
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Low-dissipation regime ∆Sirr ∝ 1/τ

∆Sirr ∆Wdis

P =
(TH − TC)∆S − TH ΣH
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Speed optimization (τH , τC)

M. Esposito et al.
PRL 105, 150603 (2010)

YU-HAN MA, DAZHI XU, HUI DONG, AND CHANG-PU SUN PHYSICAL REVIEW E 98, 042112 (2018)

FIG. 1. Constraint on normalized efficiency η̃ ≡ η/ηC and out-
put power P̃ ≡ P/Pmax. The orange curve shows the constraint
relation of Eq. (1). Dots show the normalized efficiency and output
power of a simple two-level atomic heat engine. The gray dotted
curve shows the lower bound, which will be derived below. The
red circle denotes the Carnot efficiency ηC; the green triangle marks
the maximum power efficiency obtained in Ref. [17]. The gray area
represents the bound derived in Ref. [19].

II. GENERAL DERIVATION

In a finite-time heat engine cycle, we divide the heat
exchange Qx with the high (x = h) and low (x = c) tem-
perature baths into reversible Q(r )

x = Tx�Sx and irreversible
Q(i)

x = −Tx�S (i)
x parts, namely, Qx = Q(r )

x + Q(i)
x , where

�S (i)
x is the irreversible entropy generated. For the reversible

part, we have �Sc = −�Sh. The low-dissipation assumption
[8,17,24–28] has been widely used in many recent studies of
finite-time cycle engines,

Tx�S (i)
x = Mx

tx
, (2)

where tx is the corresponding operation time. Mx is deter-
mined by the temperature Tx , the coupling constant to the
bath, but the cycle endpoints, however, are not dependent on
operation time tx . We will show clearly its dependence on
microscopic parameters in the following example of a two-
level atom. The power and efficiency are obtained simply as
P = (Qh + Qc )/(th + tc ) and η = W/Qh, where W = Qh +
Qc is the converted work. They can be further expressed via
Eq. (2) and the fact Q

(r )
h + Q(r )

c = ηCQ
(r )
h as

P =
ηCQ

(r )
h − Mh

th
− Mc

tc

th + tc
, (3)

η =
ηCQ

(r )
h − Mh

th
− Mc

tc

Q
(r )
h − Mh

th

. (4)

Applying the inequality a/x + bx � 2
√

ab to Eq. (3), then
we obtain a simple relation between Q

(r )
h and P as

ηCQ
(r )
h = P (th + tc ) + Mh

th
+ Mc

tc
� 2

√
MP, (5)

which defines the maximum output power

Pmax ≡
(
ηCQ

(r )
h

)2

4M
, (6)

with M = (
√

Mh + √
Mc )2. We remark here that the inequal-

ity Eq. (5) becomes equality only when th(c) = √
Mh(c)/Pmax,

which directly leads to the EMP derived in Ref. [17]. This
inequality results in Pmax because it reduces the right side of
the equality to its infimum and all the operation times th(c)

are eliminated completely. To obtain a universal constraint on
efficiency and power, we should properly lose this inequality.

We notice the following fact: a convex function f (x)
defined on domain X satisfies

λf (x1) + (1 − λ)f (x2) � f [λx1 + (1 − λ)x2], (7)

∀x1, x2 ∈ X and ∀λ ∈ [0, 1]. If we choose the convex function
as f (x) = 1/x and set x1 = th/

√
Mh, x2 = tc/

√
Mc, and λ =√

Mh/M , it is not hard to find
Mh

th
+ Mc

tc
� M

tc + th
. (8)

Taking Eq. (8) into Eq. (3), we obtain a constraint on τ ≡
th + tc as

Pτ 2 − ηCQ
(r )
h τ + (

√
Mh +

√
Mc )2 � 0. (9)

Thus, the total operation time τ is bounded by τ− � τ � τ+,
with

τ± = ηCQ
(r )
h

2P
(1 ±

√
1 − P̃ ). (10)

Here P̃ ≡ P/Pmax is the dimensionless power with Pmax given
in Eq. (6).

In this work, we are mainly concerned with the upper
bound of the efficiency η̃+ for a given power P̃ and fixed
engine setup, i.e., fixed Mh(c) and Th(c) (the lower bound η̃− is
presented in Appendix A). The problem of finding the upper
bound now becomes an optimization problem:

η̃+ = arg max(η̃) subject to τ � τ+. (11)

Because Eq. (4) is an increasing function of both th and tc, the
upper bound must be achieved under the condition τ = τ+.
Physically, this fact can be understood as that the efficiency
increases as the total operation time increases. Therefore,
the solution of this optimization problem is given by the
condition of unique solution of Eq. (4) and th + tc = τ+.
Straightforwardly, a quadratic equation for tc can be obtained
by taking th + tc = τ+ into Eq. (4):

t2
c +

[
(1 − η̃ηC )Mh − Mc

(1 − η̃)ηCQ
(r )
h

− τ+

]
tc + Mcτ+

(1 − η̃)ηCQ
(r )
h

= 0.

(12)
The requirement of unique solution of Eq. (12) [the geo-
metrical explanation of this requirement can be found after
Eq. (A4) in Appendix A] is equivalent to that the discriminant
of the above equation is zero. This immediately results in
another quadratic equation for η̃+, the solution of which gives
the upper bound of efficiency for given power and is written
explicitly as

η̃+ = (1 +
√

1 − P̃ )2

(1 +
√

1 − P̃ )2 + [
1 − (1+ζ )2

4 ηC
]
P̃

+ (1 − ζ 2)P̃ (1 +
√

1 − P̃ ){
(1 +

√
1 − P̃ )2 + [

1 − (1+ζ )2

4 ηC
]
P̃

}2

042112-2

Y.-H. Ma et al.
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Symmetric case ΣH = ΣC := Σ

η = γηCarnot γ < 1

P (max)
γ =

(∆S)2

4Σ

(TH − TC)2γ(1− γ)

γTH + (1− γ)TH

∆S =

∫
dS =

∫
Ṡ dt = −

∫
dt Tr[ω̇β lnωβ]

ωβ(~λ)⇒ ∆S =

∫ 1

0
~s(λ) · ~̇λ dt

scalar product
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Recipe for Σ?1

Σ ≡ thermodynamic length (X
~λ(t)−−→ Y )

(0 ≤ t ≤ 1)

slow driving
linear response
discrete processes

Σ =

∫ 1

0

~̇λTm(λ)~̇λ dt

quadratic form (m > 0)

1Scandi, Perarnau arXiv 1810.05583
6 / 13



Infinitesimal cycles are optimal
P.Abiuso, M.Perarnau arXiv 1907.xxxxx

∆S2

Σ
=

(∫ 1
0 ~s(λ) · ~̇λ dt

)2

∫ 1
0
~̇λTm(λ)~̇λ dt

≤
∫ 1

0
~sTm−1(λ)~s dt ≤ max

λ

[
~sTm−1(λ)~s

]

fullfilled for ~λ(t) = limε→0

[
~λ∗ + εt m−1~s(λ∗)

]
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Applications

optimal control for the performance of:
independent N-Qubits array, Ising chain, XY model
systems near critical transitions

Qubit Carnot Cycle (H = E(t)
2
σz)

Using slow-drivinga technique

Pmax ∼ 0.11
(
√
TH −

√
TC)2

A

A(model) ' τrel

aCavina, Mari, Giovannetti - Phys.Rev.Lett. 119, 050601 (2017)
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non-Markovian setup

ρs

↓

ρhsc
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n-M model
ρ̇sc = −i[Hs +Hc +HI , ρsc] +Ds[ρsc] +Dc[ρsc]

y := γ
ΓS
6= 0→ non-Markovian dynamics on S

10 / 13



the n-M coupling enhances the power output

↪→ but no free energy is pumped in the system from the baths (e.g.
efficiency is not boosted)
↪→ advantage comes from the improved thermalisation timescale

Pmax ∝
1

A(ΓS ,ΓC , γ)

c = ΓC
ΓS

y = γ
ΓS

11 / 13



the n-M coupling enhances the power output
↪→ but no free energy is pumped in the system from the baths (e.g.
efficiency is not boosted)

↪→ advantage comes from the improved thermalisation timescale

Pmax ∝
1

A(ΓS ,ΓC , γ)

c = ΓC
ΓS

y = γ
ΓS

11 / 13



the n-M coupling enhances the power output
↪→ but no free energy is pumped in the system from the baths (e.g.
efficiency is not boosted)
↪→ advantage comes from the improved thermalisation timescale

Pmax ∝
1

A(ΓS ,ΓC , γ)

c = ΓC
ΓS

y = γ
ΓS

11 / 13



the n-M coupling enhances the power output
↪→ but no free energy is pumped in the system from the baths (e.g.
efficiency is not boosted)
↪→ advantage comes from the improved thermalisation timescale

Pmax ∝
1

A(ΓS ,ΓC , γ)

c = ΓC
ΓS

y = γ
ΓS

11 / 13



the n-M coupling enhances the power output
↪→ but no free energy is pumped in the system from the baths (e.g.
efficiency is not boosted)
↪→ advantage comes from the improved thermalisation timescale

Pmax ∝
1

A(ΓS ,ΓC , γ)

c = ΓC
ΓS

y = γ
ΓS

11 / 13



Why faster thermalisation?

Fsc = Fs + Fc + TI(S : C)

∆Fs = ∆Fsc −∆Fc − T∆I(S : C)
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Conclusions

Low-dissipation regime allows simple optimisation
(speed, shape, working point)

Best control: infinitesimal modulation

Remarks
General: any quantum system in the l-d regime, any control
restrictions H(~λ(t)), any continuously controlled system with small
dissipations

Results on simple models and phase transition systems (to be
published)
Non-Markov mechanism for accelerated thermalisation
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THANK YOU!

P.Abiuso, M.Perarnau arXiv 1907.xxxxx
P.Abiuso, V.Giovannetti PRA 99, 052106 (2019)
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