Low dissipation regime optimisation and applications

Paolo Abiuso

24/06/19

- Low dissipation regime
- Optimisation of thermal machines
- Applications: non-Markovian effects

Thermal bath $T = 1/\beta$

control on $H(\vec{\lambda}(t))$

operational time $\tau \to \infty$

Thermal bath $T = 1/\beta$

control on $H(\vec{\lambda}(t))$

operational time $\tau \to \infty$

 $\Rightarrow \rho(t) \cong \omega_{\beta}(H(t))$ $:= e^{-\beta H(t)} / Z(t)$

$$\rho = \frac{e^{-\beta H}}{Z(\beta H)}$$

$$X := (\rho_X, H_X)$$

$$Y := (\rho_Y, H_Y)$$

$$H$$

Thermal bath $T = 1/\beta$

control on $H(\vec{\lambda}(t))$

operational time $\tau \to \infty$

 $\Rightarrow \rho(t) \cong \omega_{\beta}(H(t))$ $:= e^{-\beta H(t)} / Z(t)$

Any $X \mapsto Y$ is reversible

Thermal bath $T = 1/\beta$

control on $H(\vec{\lambda}(t))$

operational time $\tau \to \infty$

 $\Rightarrow \rho(t) \cong \omega_{\beta}(H(t))$ $:= e^{-\beta H(t)} / Z(t)$

Any $X \mapsto Y$ is reversible

Δ

$$F = \Delta W \Leftrightarrow \Delta S = \beta \Delta Q$$

$$\rho = \frac{e^{-\beta H}}{Z(\beta H)}$$

$$X := (\rho_X, H_X)$$

$$Y := (\rho_Y, H_Y)$$

$$H$$

Thermal bath $T = 1/\beta$

control on $H(\vec{\lambda}(t))$

operational time $\tau \to \infty$

 $\Rightarrow \rho(t) \cong \omega_{\beta}(H(t))$ $:= e^{-\beta H(t)} / Z(t)$

 $\Delta F = \Delta W \Leftrightarrow \Delta S = \beta \Delta Q$

UNIVERSAL...

Thermal bath $T = 1/\beta$

control on $H(\vec{\lambda}(t))$

operational time $\tau \to \infty$

 $\Rightarrow \rho(t) \cong \omega_{\beta}(H(t))$ $:= e^{-\beta H(t)} / Z(t)$

Any $X \mapsto Y$ is reversible

 $\Delta F = \Delta W \Leftrightarrow \Delta S = \beta \Delta Q$

UNIVERSAL... ...but NO POWER!

Low-dissipation regime $\Delta S_{irr} \propto 1/\tau$

Low-dissipation regime $\Delta S_{irr} \propto 1/\tau$

$$X \mapsto Y \qquad \qquad \Delta S = \beta \Delta Q + \frac{\Sigma}{\tau}$$

Low-dissipation regime $\Delta S_{irr} \propto 1/ au$

$$X \mapsto Y$$
 $\Delta S = \beta \Delta Q + \frac{\Sigma}{\tau} \Leftrightarrow \Delta F = \Delta W - T \frac{\Sigma}{\tau}$

Low-dissipation regime $\Delta S_{irr} \propto 1/ au$

$$X \mapsto Y \qquad \Delta S = \beta \Delta Q + \frac{\Sigma}{\tau} \Leftrightarrow \Delta F = \Delta W - T \frac{\Sigma}{\tau}$$
$$\Delta S_{irr} \qquad \Delta W_{dis}$$

Low-dissipation regime $\Delta S_{irr} \propto 1/ au$

$$X \mapsto Y \qquad \Delta S = \beta \Delta Q + \frac{\Sigma}{\tau} \Leftrightarrow \Delta F = \Delta W - T \frac{\Sigma}{\tau}$$
$$\Delta S_{irr} \qquad \Delta W_{dis}$$

Low-dissipation regime $\Delta S_{irr} \propto 1/\tau$

Speed optimization (τ_H, τ_C)

M. Esposito et al. PRL 105, 150603 (2010)

Speed optimization (τ_H, τ_C)

M. Esposito et al. PRL 105, 150603 (2010)

Y.-H. Ma et al. PRE 98, 042112 (2018)

Symmetric case $\Sigma_H = \Sigma_C := \Sigma$

$$\eta = \gamma \eta_{\text{Carnot}} \qquad \gamma < 1$$
$$P_{\gamma}^{(\text{max})} = \frac{(\Delta S)^2}{4\Sigma} \frac{(T_H - T_C)^2 \gamma (1 - \gamma)}{\gamma T_H + (1 - \gamma) T_H}$$

Symmetric case $\Sigma_H = \Sigma_C := \Sigma$

$$\eta = \gamma \eta_{\text{Carnot}} \qquad \gamma < 1$$
$$P_{\gamma}^{(\text{max})} = \frac{(\Delta S)^2}{4\Sigma} \frac{(T_H - T_C)^2 \gamma (1 - \gamma)}{\gamma T_H + (1 - \gamma) T_H}$$

$$\Delta S = \int \mathrm{d}S = \int \dot{S} \,\mathrm{d}t = -\int \mathrm{d}t \,\mathbf{Tr}[\dot{\omega}_{\beta}\ln\omega_{\beta}]$$

Symmetric case $\Sigma_H = \Sigma_C := \Sigma$

$$\eta = \gamma \eta_{\text{Carnot}} \qquad \gamma < 1$$
$$P_{\gamma}^{(\text{max})} = \frac{(\Delta S)^2}{4\Sigma} \frac{(T_H - T_C)^2 \gamma (1 - \gamma)}{\gamma T_H + (1 - \gamma) T_H}$$

$$\Delta S = \int dS = \int \dot{S} dt = -\int dt \operatorname{Tr}[\dot{\omega}_{\beta} \ln \omega_{\beta}]$$
$$\omega_{\beta}(\vec{\lambda}) \Rightarrow \Delta S = \int_{0}^{1} \vec{s}(\lambda) \cdot \dot{\vec{\lambda}} dt$$
scalar product

$$\Sigma \equiv \text{thermodynamic length } (X \xrightarrow{\lambda(t)} Y)$$

(0 \le t \le 1)

- slow driving
- linear response
- discrete processes

$$\Sigma = \int_{0}^{1} \dot{\vec{\lambda}}^{T} m(\lambda) \dot{\vec{\lambda}} dt$$
quadratic form (m > 0)

¹Scandi, Perarnau arXiv 1810.05583

Infinitesimal cycles are optimal

P.Abiuso, M.Perarnau arXiv 1907.xxxxx

$$\frac{\Delta S^2}{\Sigma} = \frac{\left(\int_0^1 \vec{s}(\lambda) \cdot \dot{\vec{\lambda}} \, \mathrm{d}t\right)^2}{\int_0^1 \dot{\vec{\lambda}}^T m(\lambda) \dot{\vec{\lambda}} \, \mathrm{d}t} \le \int_0^1 \vec{s}^T m^{-1}(\lambda) \vec{s} \, \mathrm{d}t \le \max_{\lambda} \left[\vec{s}^T m^{-1}(\lambda) \vec{s}\right]$$

Infinitesimal cycles are optimal

P.Abiuso, M.Perarnau arXiv 1907.xxxxx

$$\frac{\Delta S^2}{\Sigma} = \frac{\left(\int_0^1 \vec{s}(\lambda) \cdot \dot{\vec{\lambda}} \, \mathrm{d}t\right)^2}{\int_0^1 \dot{\vec{\lambda}}^T m(\lambda) \dot{\vec{\lambda}} \, \mathrm{d}t} \le \int_0^1 \vec{s}^T m^{-1}(\lambda) \vec{s} \, \mathrm{d}t \le \max_{\lambda} \left[\vec{s}^T m^{-1}(\lambda) \vec{s}\right]$$

fullfilled for $\vec{\lambda}(t) = \lim_{\varepsilon \to 0} \left[\vec{\lambda}^* + \varepsilon t \ m^{-1} \vec{s}(\lambda^*)\right]$

Infinitesimal cycles are optimal

P.Abiuso, M.Perarnau arXiv 1907.xxxxx

$$\frac{\Delta S^2}{\Sigma} = \frac{\left(\int_0^1 \vec{s}(\lambda) \cdot \dot{\vec{\lambda}} \, \mathrm{d}t\right)^2}{\int_0^1 \dot{\vec{\lambda}}^T m(\lambda) \dot{\vec{\lambda}} \, \mathrm{d}t} \le \int_0^1 \vec{s}^T m^{-1}(\lambda) \vec{s} \, \mathrm{d}t \le \max_{\lambda} \left[\vec{s}^T m^{-1}(\lambda) \vec{s}\right]$$
fullfilled for $\vec{\lambda}(t) = \lim_{\varepsilon \to 0} \left[\vec{\lambda}^* + \varepsilon t \ m^{-1} \vec{s}(\lambda^*)\right]$
 ρ
 $\left[\int_{u_{x_1 + \varepsilon}}^{u_{x_1 + \varepsilon}} H(t) \right]$

Applications

optimal control for the performance of:

- independent N-Qubits array, Ising chain, XY model
- systems near critical transitions

Applications

optimal control for the performance of:

- independent N-Qubits array, Ising chain, XY model
- systems near critical transitions

^aCavina, Mari, Giovannetti - Phys.Rev.Lett. **119**, 050601 (2017)

non-Markovian setup

n-M model

$$\dot{\rho}_{sc} = -i[H_s + H_c + H_I, \rho_{sc}] + \mathcal{D}^s[\rho_{sc}] + \mathcal{D}^c[\rho_{sc}]$$

 $y:=\frac{\gamma}{\Gamma_S}\neq 0 \rightarrow \text{non-Markovian}$ dynamics on $\mathcal S$

 \hookrightarrow but no free energy is pumped in the system from the baths (e.g. efficiency is not boosted)

 \hookrightarrow but no free energy is pumped in the system from the baths (e.g. efficiency is not boosted)

 \hookrightarrow advantage comes from the improved thermalisation timescale

 \hookrightarrow but no free energy is pumped in the system from the baths (e.g. efficiency is not boosted)

 \hookrightarrow advantage comes from the improved thermalisation timescale

$$P_{max} \propto \frac{1}{A(\Gamma_S, \Gamma_C, \gamma)}$$

 \hookrightarrow but no free energy is pumped in the system from the baths (e.g. efficiency is not boosted)

 \hookrightarrow advantage comes from the improved thermalisation timescale

$$P_{max} \propto rac{1}{A(\Gamma_S, \Gamma_C, \gamma)}$$

Why faster thermalisation?

$$F_{sc} = F_s + F_c + T\mathcal{I}(\mathcal{S}:\mathcal{C})$$
$$\Delta F_s = \Delta F_{sc} - \Delta F_c - T\Delta \mathcal{I}(\mathcal{S}:\mathcal{C})$$

Why faster thermalisation?

$$F_{sc} = F_s + F_c + T\mathcal{I}(\mathcal{S}:\mathcal{C})$$
$$\Delta F_s = \Delta F_{sc} - \Delta F_c - T\Delta \mathcal{I}(\mathcal{S}:\mathcal{C})$$

• Low-dissipation regime allows simple optimisation (speed, shape, working point)

- Low-dissipation regime allows simple optimisation (speed, shape, working point)
- Best control: infinitesimal modulation

Remarks

- Low-dissipation regime allows simple optimisation (speed, shape, working point)
- Best control: infinitesimal modulation

Remarks

General: any quantum system in the l-d regime, any control restrictions $H(\vec{\lambda}(t))$, any continuously controlled system with small dissipations

- Low-dissipation regime allows simple optimisation (speed, shape, working point)
- Best control: infinitesimal modulation

Remarks

General: any quantum system in the l-d regime, any control restrictions $H(\vec{\lambda}(t))$, any continuously controlled system with small dissipations

• Results on simple models and phase transition systems (to be published)

- Low-dissipation regime allows simple optimisation (speed, shape, working point)
- Best control: infinitesimal modulation

Remarks

General: any quantum system in the l-d regime, any control restrictions $H(\vec{\lambda}(t))$, any continuously controlled system with small dissipations

- Results on simple models and phase transition systems (to be published)
- Non-Markov mechanism for accelerated thermalisation

THANK YOU!

P.Abiuso, M.Perarnau arXiv 1907.xxxxx P.Abiuso, V.Giovannetti PRA **99**, 052106 (2019)