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@ Nonequilibrium entropy production
@ Microscopic expressions
@ Nonequilibrium statistical distance

9 Minimizing entropy production
@ Optimizing the cooling of a cup of coffee
@ Optimizing the cooling of dilute atomic gas



Thermodynamics: a short reminder

Equilibrium (nonequilibrium) processes:

Entropy: AS=Q/T + X~
Work: W =AF+ W, (F = U— TS = free energy)

with (X) > 0 and (W) > 0 (Second law)

- thermodynamics does not allow computation of ¥, W,

Nonequilibrium entropy production:
z:B(W_AF):IBVVIU ﬁ:1/(kT)

- difference between total work and equilibrium work



Nonequilibrium entropy production

Maximum extractable work:
—(W) =—-AF — kT(X) < —AF
> is reduced by nonequilibrium entropy production

Efficiency of thermodynamic devices:

> fundamental quantity of nonequilibrium physics



Microscopic expression: single-step process
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Case 1: Complete thermalization: Schisgl Z. Phys. (1966)
() = S(pollp®®) =0 with ™ = exp(~pH)/Z
Relative entropy: S (p1]|p2) = tr(p1Inp1 — p1Inp2)

Case 2: Partial thermalization: Deffner, Lutz PRL (2011)

(%) = S(pol|p®?) = S(prllp®9) < S(pol|p®7)

> entropy production = "entropic distance"



Microscopic expression: multi-step process
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Case 1: Complete thermalization: Nulton et al., JCP (1985)

(xi) = S(pillpi+1) = 0
Case 2: Partial thermalization:
(Z5) = S(pillp®9) — S(piz1[p°9) > 0

Total entropy production: () = SN (%))

Statistical distance: L =+/2(%X))



Thermodynamic length
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> statistical distance has not been measured so far



e Minimizing entropy production
@ Optimizing the cooling of a cup of coffee
@ Optimizing the cooling of dilute atomic gas



Minimizing entropy production

Cooling acup of coffee: Salamon et al. J. Noneq Therm. (2002), Lima EJP (2015)
Coffee Cup Motel
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Complete thermalization:
(Zi) = S(pillpiv1) with Q= CdT;

. _ —1/K
> optimal temperature sequence T’Tf = (%) for K steps

(entropy production minimized for equal temperature ratios)

> "systems like to stay close to equilibrium"



Minimizing entropy production

Dilute Cesium atoms in a nonharmonic MOT (Widera lab)

W
x%

y

Effectively noninteracting atoms

- no thermalization (over duration of the experiment)

Questions: how to cool the atomic gas?



Cooling dilute atomic gas

Sideband Raman cooling Kerman et al. PRL (2000)
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- standard subdoppler laser cooling scheme



Sideband Raman cooling

Raman cools momentum (but not position): nonthermal state
> apply sequence of pulses (equal spacing)
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Question: what is the optimal spacing?



Optimal cooling
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Partial thermalization:
(x1) = S(pillpr) — S(piv1llpr) = 0

Minimize entropic distance to final (target) state:

S(psllps) for a sequence of three pulses



What is measured?

1. Axial position distribution f(z) (fluorescence imaging)
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2. Momentum distribution after pulse f(p;) (release-recapture)

Recapture Rate (1)

Release Time T (ms)

- independent after pulse p(z, p;) = f(z)f(p,) (phase-space density)



Phase-space dynamics

Comparison theory/experiment:
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- "whorls" created by nonharmonic potential



K-directed divergence

Relative entropy:

S(p1llpz) = / dzp1 In(p1/p2)

only defined if p, different from zero when p¢ different from zero

> zero bins due to finite statistics (in experiment or numerics)
are problematic

K-directed divergence: Lin , IEEE (1991)

K(p1llp2) = S(p1ll(p1 + p2)/2)

satisfies K(p1||p2) > 0 and K(p1]|p2) = 0 iff p1 = pz like S(p1]|p2)



Results 1

Entropic distance K(ps||pf):
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Pulse spacing T (ms)

directed divergence K

- harmonic (simulation) mimimum at 4.2ms (= quarter-period)
> nonharmonic (data) mimimum at 6.3ms (= no clear period)



Results 2

Overlap with final state for - = 2.1 ms, 6.3 ms and 10.5ms:
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> overlap doubled for optimal time (more than 75%)

- temperature reduced by a factor 4: from 12.1 to 2.9 K



Results 3

Statistical distance (harmonic - nonharmonic):

I

. 045 3) 41 HDb)

> *m e Fo—— Xy q

< 4 Sy

S 030 | 7 . 4} =
7} ©

L Y \

> X \

] ) A

o \

% 015 1 N AR 1F

: LN

0.00 | 1 | 1 ? 1 | | 1
2

1
2 4 6 8 10 4 6 8 10
pulse spacing 7 (ms) pulse spacing 7 (ms)

> information on the cooling process

- optimal cooling mainly achieved in first two steps



@ entropy production and statistical distance are fundamental
nonequilibrium quantities

@ they can be measured in cold-atom experiment

@ they can be used to successfully optimize cooling
of a dilute atomic gas

Nonequilibrium optimization of the cooling of a dilute atomic gas,
D. Mayer, F. Schmidt, S. Haupt, Q. Bouton, D. Adam, T. Lausch, E.
Lutz, and A. Widera, arXiv:1901.06188
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